首页|汽车前底盘装配视觉检测系统设计与应用

汽车前底盘装配视觉检测系统设计与应用

扫码查看
为解决汽车底盘混流装配错装、漏装和人工检测效率低的问题,设计了基于YOLOv3-Tiny的在线检测系统.该检测系统利用4 套光源-相机组合的成像系统,从多角度获取前底盘模块的全貌图像,利用基于差分统计的条纹识别算法剔除低质量图像;根据检测目标特性,简化非极大值抑制算法,优化检测过程.实验和现场运行结果表明:检测系统目标无遮挡检出率达到 100%,综合识别准确率达到99.95%,平均检测时间 3.5 s,较之前人工检测效率提升 94.55%,检测系统具有较高的准确度和检测效率,在汽车工业中实现了柔性化和智能化的目标检测应用.
Design and Application of Vehicle Front Chassis Assembly Visual Inspection System
In order to solve the problems of wrong assembly,missing assembly and low efficiency of manual inspection in au-tomobile chassis mixed-flow assembly,an on-line detection system based on YOLOv3-Tiny was designed.The detection system used four sets of imaging systems consisting of light sources and cameras to obtain the panoramic image of the front chassis mod-ule from multiple angles.And the detection system used the fringe recognition algorithm based on differential statistics to eliminate the low-quality image.According to the characteristics of the detection target,the non-maximum suppression algorithm was simpli-fied.And the detection process was optimized.The results of experiment and field operation show that the unoccluded detection rate,comprehensive recognition accuracy and average detection time are 100%,99.95%and 3.5 s.The average detection time is 94.55%lower than that of manual detection.The detection system has higher accuracy and higher efficiency,and has achieved flexible and intelligent target detection applications in the automotive industry.

automobile manufacturingautomobile assembly parts inspectionYOLOv3fringe detectionnon-maximum suppression

李硕、苑明哲、王文洪、史洪岩、肖金超、宋纯贺、曹飞道

展开 >

沈阳化工大学信息工程学院

中国科学院沈阳自动化研究所

广州工业智能研究院

汽车制造 汽车装配部件检测 YOLOv3 条纹检测 非极大值抑制

国家自然科学基金面上项目国家自然科学基金面上项目中科院科技服务网络计划(STS)-东莞专项

622733326227333720211600200072

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(6)
  • 18