首页|基于深度学习的机理模型与数据混合驱动的视觉转角测量方法

基于深度学习的机理模型与数据混合驱动的视觉转角测量方法

扫码查看
为克服基于视觉的转角测量方法容易受到系统干扰的局限性,提出了一种基于深度学习的机理模型和数据混合驱动的视觉转角测量方法.从数学原理上验证了采用等腰三角形作为轴上花纹的合理性和有效性,构建三角花纹转角计算机理数学模型.引入基于YOLOv8 的深度学习模型,采用线性组合将两者结合构建成混合转角测量模型.实验结果显示,这种混合模型在测量准度上有显著提升,相比仅用机理模型,其平均误差降低1.125°,均方根误差降低 10.05°,在不同环境测试集上仍保持高效性能.该模型充分利用了深度学习模型对图像随机干扰的学习能力,同时保持了数学模型的约束和稳定性,提高了视觉角度测量的准确性,而且增强了其对环境变化以及系统干扰的适应性.
Visual Rotation Angle Measurement Method of Mechanism Model and Data Hybrid Driven Based on Deep Learning
To overcome the limitations of vision-based angle measurement methods,which are susceptible to system disturbances,this paper proposed a novel vision-based angle measurement approach,integrating a deep learning mechanism and data-driven model.This study validated the use of an isosceles triangle pattern on the axis for its effectiveness and rationality,establishing a mathematical model for calculating the angle based on the triangle pattern.This paper introduced a deep learning model based on YOLOv8.A hybrid angle measurement model was constructed by using linear combination..Experimental results demonstrate significant improvements in measurement accuracy with this hybrid model.Compared to using only principle-based model,the av-erage error is reduced by 1.125°,and the root mean square error decreases by 10.05°,maintaining high performance across vari-ous environmental test sets.This model effectively leverages the deep learning model's ability to adapt to random image disturb-ances,while retaining the constraints and stability of traditional mathematical models.The precision of visual angle measurements is improved and the adaptability to environmental changes and system disturbances is boosted.

rotation angle measurementmachine visiondeep learninghybrid model

陈武超、俞翔栋、陈洪宇、柯瑞庭、陶建峰

展开 >

中国船舶集团有限公司第七一一研究所动力装置事业部

上海交通大学机械与动力工程学院

上海交通大学,机械系统与振动国家重点实验室

转角测量 机器视觉 深度学习 混合模型

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(6)
  • 9