首页|气体钻井岩屑含水量快速检测系统

气体钻井岩屑含水量快速检测系统

扫码查看
针对目前钻井现场检测地层出水的方法速度慢、抗干扰能力弱的问题,利用近红外光在水中具有显著的吸收特性,提出了一种基于近红外图像的岩屑含水量快速检测系统.系统利用 940 nm波段的近红外摄像头采集图像,消除可见光干扰,提高了检测的灵敏度.借助基于小波变换的滤波算法有效去除图像中的散射噪声,并采用区域生长算法进行图像分割,排除干扰物,避免误分割情况,提升系统的抗干扰能力.此外,运用HDBSCAN聚类算法快速精确提取岩屑区域,获取岩屑图像的灰度平均值.最后,利用分段线性回归算法构建了灰度值-含水量模型,预测岩屑含水量.实验结果表明:系统在复杂的天然气钻井环境中工作有效,最大绝对误差为 1.87%,精度较高.平均检测时间不超过 6 s,速度较快.相较于烘干法,系统在保证准确率的基础上显著提高了检测速度.与湿度传感器相比,系统不仅具有更高的检测精度,还能覆盖更大面积岩屑的水分检测需求.
Rapid Detection System for Gas Drilling Shale Moisture Content
In response to the problems of the slow detection of formation effluent and weak anti-interference ability in drilling site,this study proposed a rapid detection system for shale moisture content based on near-infrared images with significant absorp-tion characteristics in water.This system used the 940 nm band near-infrared camera to capture images,which eliminated visible light interference and improved the sensitivity of detection.It also used the filtering algorithm based on the wavelet transform ef-fectively to remove the scattering noise in the image,and utilized the regional growth algorithm for image segmentation to exclude interference and avoid false segmentation,thus improving the anti-interference ability of the system.In addition,the HDBSCAN clustering algorithm was utilized for rapid and precise extraction of shale areas and the grayscale average of shale images was aquired.Finally,a gray value-water content model was constructed using segmented linear regression algorithm to predict the water content of shale.The experimental results show that this system works effectively in the complex natural gas drilling environment,with maximum absolute error of 1.87%and high accuracy.The average detection time is not more than 6 seconds,which is fast.Compared with the drying method,this system significantly improves the detection speed on the basis of ensuring the accuracy.Compared with humidity sensors,this system not only has higher detection accuracy,but also covers the moisture detection re-quirements of larger areas.

gas drillingshale water contentnear-infrared imageHDBSCAN cluster

李田禹、朱睿、陈向东、丁星、夏文鹤、李皋、陈一健、苟浩淞、黄维尧

展开 >

西南交通大学信息科学与技术学院

西南石油大学石油与天然气工程学院

中国移动通信集团四川有限公司IT部

深圳市美思先端电子有限公司

展开 >

气体钻井 岩屑含水量 近红外图像 HDBSCAN聚类

国家重点研发计划项目四川省重点研发计划项目中央高校基本科研基金项目

2023YFB32102002023YFG00622682022ZTPY001

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(8)