首页|基于SCC-YOLO的指针式仪表轻量化检测方法

基于SCC-YOLO的指针式仪表轻量化检测方法

扫码查看
针对指针式仪表检测模型结构复杂、占用内存量高、参数计算量大而导致的不易部署问题,提出一种基于YOLOv5 的轻量化仪表目标检测网络SCC-YOLO.采用轻量化主干ShuffleBlock_lite结构重新设计网络主干,引入卷积核重构的深度可分离卷积,通过SimAM无参注意力机制模块进一步提升特征提取能力.融合坐标卷积CoordConv与CARAFE轻量化上采样模块提高模型特征融合性能.利用数据增强技术构建真实场景下和复杂场景下的指针式仪表图像数据集.对比实验结果表明:SCC-YOLO模型能大幅提升指针式仪表的检测效率,模型的参数量平均降低 27.3%,计算量平均降低54.8%,精度上综合提升1.3%.轻量化的设计使其能够在移动端与边缘设备更容易部署,能够满足真实场景下的指针式仪表检测任务要求.
Lightweight Detection Method for Pointer Meters Based on SCC-YOLO
To address the issue of difficult deployment caused by the complex structure,high memory usage,and large param-eter calculation of pointer instrument detection,a lightweight instrumentation target detection network SCC-YOLO based on YOLOv5 was proposed.The network backbone was redesigned by using the lightweight backbone ShuffleBlock_lite structure,and the depth separable convolution reconstructed by convolution kernel was introduced to further improve the feature extraction capa-bility through the SimAM parameter-free attention mechanism module to further enhance the feature extraction capability.Fusing coordinate convolution CoordConv with CARAFE lightweight upsampling module improved the model feature fusion performance.Data enhancement techniques were utilized to construct pointer gauge image datasets in real scenes and in complex scenes.Com-parative experimental results show that the SCC-YOLO model can significantly improve the detection efficiency of pointer gauges,with an average reduction of 27.3%in the number of parameters of the model,an average reduction of 54.8%in the computa-tion,and an integrated improvement of 1.3%in the accuracy.The lightweight design makes it easier to be deployed on mobile and edge devices,and can meet the requirements of pointer meter detection tasks in real scenarios.

pointer meterslightweightYOLOv5parameter-free attention mechanismcoordinate convolutiondata enhancement

任志玲、曹正言、任立然

展开 >

辽宁工程技术大学电气与控制工程学院

辽宁工程技术大学鄂尔多斯研究院

指针式仪表 轻量化 YOLOv5 无参注意力机制 坐标卷积 数据增强

国家自然科学基金项目辽宁工程技术大学鄂尔多斯研究院校地科技合作培育项目

52177047YJY-XD-2023-004

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(9)
  • 5