首页|基于强化学习的两时间尺度系统最优跟踪控制

基于强化学习的两时间尺度系统最优跟踪控制

扫码查看
针对两时间尺度系统的最优跟踪控制问题,提出了一种基于奇异摄动理论与强化学习技术的方法.首先,通过研究奇异摄动理论,将系统分解为快和慢 2 个子系统,解决了系统存在的奇异摄动参数问题.其次,将系统的跟踪问题分解为慢子系统的线性二次型跟踪(linear quadratic tracking,LQT)问题和快子系统的线性二次型调节(linear quadratic regulator,LQR)问题,进而利用策略Q-学习分别为2 个子系统设计控制器求解算法.仿真结果表明所提方法能实现系统的最优跟踪性能.
Optimal Tracking Control of Two-time-scale Systems Based on Reinforcement Learning
Aiming at the optimal tracking control problem of two-time-scale systems,a method based on singular perturbation theory and reinforcement learning technique was proposed.Firstly,the system was decomposed into fast and slow subsystems based on singular perturbation theory,solving the singular perturbation parameter problem existing in the system.Secondly,the tracking problem of the two-time-scale system was decomposed into the linear quadratic tracking(LQT)problem for the slow sub-system and the linear quadratic regulator(LQR)problem for the fast subsystem.Furthermore,the policy Q-learning was used to design the controller solving algorithms for the two subsystems respectively.Finally,the results show that the proposed method can achieve the optimal tracking performance of the system.

two-time-scale systemsingular perturbationQ-learningoptimal tracking control

邓武丹、李庆奎

展开 >

北京信息科技大学自动化学院

两时间尺度系统 奇异摄动 Q-学习 最优跟踪控制

国家重点研发计划项目

2020YFB1708200

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(9)
  • 5