首页|基于改进旋转目标检测模型的指针表读数全自动识别

基于改进旋转目标检测模型的指针表读数全自动识别

扫码查看
针对指针表图像中刻度线与指针精确定位困难及在复杂环境下易出现误检和漏检的问题,提出一种基于改进旋转目标检测模型的指针表读数全自动识别方法.首先以YOLOv5s网络为基础,设计了高效的通道与空间注意力融合模块,以提升表盘示数特征提取能力;其次设计了E-CIoU Loss以优化损失函数,增强指针边界框回归能力;同时,引入环形平滑标签以适应旋转目标检测任务;然后,利用改进的概率霍夫变换实现指针精确重定位;最后,利用极坐标平面上指针和刻度线的相对位置关系计算读数识别结果.实验结果表明:与基准模型相比,该方法有效提升了表盘示数特征检测精度,mAP 值达到了96.8%,且最终读数识别平均相对误差达到了0.52%,可满足实际应用需求.
Full-automatic Reading Recognition for Pointer Meters Based on Improved Rotating Object Detection Model
Aiming at the difficulty of accurate positioning of tick marks and pointers in pointer meter images,as well as the problem of false detection and missed detection under complex environment,a full-automatic reading recognition method for pointer meters based on an improved rotating object detection model was proposed.Firstly,based on the YOLOv5s network,an efficient channel and spatial attention fusion module were designed to improve the ability to extract reading-related features on dial image.Secondly,E-CIoU Loss was designed to optimize the loss function and enhance the ability to regress the pointer bounding box.At the same time,circular smooth label(CSL)was introduced to adapt to the task of rotating object detection.Then,the improved probabilistic Hough transform was used to achieve precise pointer repositioning.Finally,the reading recognition result was calcu-lated by using the relative position relation of pointer and tick marks in polar coordinate plane.Experimental results indicate that the proposed method effectively improve the detection accuracy of the reading-related features on dial image with the mAP value of 96.8%when compared with the benchmark model,and the average relative error of the final reading recognition reaches 0.52%,which can meet the practical application requirements.

rotating object detectionattention mechanismsoptimization loss functionimproved probabilistic Hough transform

黄酋淦、徐望明、吴高鑫

展开 >

武汉科技大学信息科学与工程学院

武汉科技大学冶金自动化与检测技术教育部工程研究中心

旋转目标检测 注意力机制 优化损失函数 改进概率霍夫变换

2024

仪表技术与传感器
沈阳仪表科学研究院

仪表技术与传感器

CSTPCD北大核心
影响因子:0.585
ISSN:1002-1841
年,卷(期):2024.(11)