首页|一类高阶齐次线性微分方程解的复振荡

一类高阶齐次线性微分方程解的复振荡

Complex Oscilition of the Solutions of a Type of Higher Order Linear Differential Equations

扫码查看
研究了高阶齐次线性微分方程f(k)+(Ak-1(z)e^pk-1(z)+Dk-1(z))f^(k-1)+…+(A0(z)e^p0(z)+D0(z))f=0解的增长性问题,其中pj(z)=ajz^n+bj,1z^n-1+…+bjn,,Aj(z),Dj(z)是有限级整函数。针对pj(z)中aj(j=0,1,…,k-1)的幅角主值不全相等的情形,得到了方程解的增长级的精确估计。
This paper investigates the properties of growth of solutions of higher order Linear Differential equations f(k)+(A^k-1(z)e^pk-1(z)+Dk-1(z))f(k-1)+L+(A0(z)e^po(z)+D0(z))f =0, in the pj(z)=aj zn+bj,1zn-1+bj,n,Aj(z) and Dj(z) were finite order entire functi

linear differential equationsentire functionorder of growthcomplex oscilition

线性微分方程 增长级 整函数 复振荡

[2010GZ43286][2007079]

2011

雁北师范学院学报
雁北师范学院

雁北师范学院学报

ISSN:1009-1939
年,卷(期):2011.27(3)