首页|结合近邻密度和信息修正的基本概率赋值生成方法

结合近邻密度和信息修正的基本概率赋值生成方法

A Basic Probability Assignment Generation Method Combining Nearest Neighbor Density and Informa-tion Correction

扫码查看
为了解决D-S证据理论应用中基本概率赋值(BPA)获取困难、生成模型适用度低的问题,提出一种结合近邻密度和信息修正的基本概率赋值生成方法:通过基于KNN算法得出的密度峰值点与样本间的距离为依据生成单焦元BPA函数,通过信念x2散度对全子集事件赋值并基于可信度对BPA进行信息修正,用改进的信念熵公式计算各证据的不确定性权重,进行证据的再分配.利用生成的BPA解决少样本和不均衡类样本的实际应用问题,经多个数据集验证诊断精度均达85%以上,优于其他方法.
In order to solve the difficulty of obtaining the basic probability assignment(BPA)and the low applicability of genera-tion model in D-S evidence theory application,a basic probabilistic assignment generation method combining nearest neighbor density and information correction was proposed.A single focal element BPA function was generated based on the distance be-tween the peak density point and the sample data derived from the K-nearest neighbor(KNN)algorithm;the values were as-signed to the whole subset of events by belief x2 divergence and BPA information was modified based on confidence.The im-proved belief entropy formula was utilized to compute the uncertainty weight of each piece of evidence for evidence redistribu-tion.The generated BPA is utilized to solve the practical application problems of few samples and imbalanced class samples,and the diagnostic accuracies of the proposed method are all over 85%,which are better than other methods,as verified by multiple datasets.

D-S evidence theorydensityinformation correctionbelief entropybelief x2 divergence

白雪婷、陈辉

展开 >

安徽理工大学计算机科学与工程学院,安徽淮南 232000

D-S证据理论 密度 信息修正 信念熵 信念x2散度

国家自然科学基金项目安徽省重点教学研究项目

611700602020jyxm0458

2024

宜宾学院学报
宜宾学院

宜宾学院学报

CHSSCD
影响因子:0.185
ISSN:1671-5365
年,卷(期):2024.24(6)
  • 15