首页|改进多任务级联卷积神经网络的驾驶员疲劳检测

改进多任务级联卷积神经网络的驾驶员疲劳检测

扫码查看
针对驾驶员疲劳检测方法中存在单一特征检测的局限性,且由于模型参数计算量过大导致在低算力的移动边缘计算设备上检测耗时过长的问题,提出一种改进的多任务级联卷积神经网络(MTCNN).通过对子网络R-Net的优化,采用平均池化来减少模型参数量,并将全连接层替换为均值池化,结合Dlib对人脸64个特征点的精准定位,选取效果较好的阈值参数实现疲劳检测.实验结果显示,在人脸数据集WIDER FACE和LFW数据集上,改进后的算法相比于改进前,参数量减少了47.5%,人脸检测的准确率从96.7%提升至97.8%.最后通过YawDD疲劳数据集,在资源受限的树莓派4B设备上实现了高效的疲劳检测,验证了其在实际应用中的可靠性.
Improved Multi-task Cascaded Convolutional Networks for Driver Fatigue
Aiming at the limitations of single-feature detection in driver fatigue detection methods and the time-consuming detec-tion on low-computing-power mobile edge computing devices due to the excessive computation of model parameters,an improved multi-task cascaded convolutional neural network(MTCNN)was proposed.Through the optimization of the sub-network R-Net,the average pooling was used to reduce the number of model parameters,and the fully-connected layer was replaced by mean pool-ing,combined with the accurate localization of the 64 feature points of the face by Dlib,and the threshold parameter with better ef-fect was selected to achieve fatigue detection.The experimental results show that on the face dataset WIDER FACE and LFW data-set,the improved algorithm reduces the amount of parameters by 47.5%compared to the pre-improvement one,and the accuracy of face detection increases from 96.7%to 97.8%.Finally,through the YawDD fatigue dataset,efficient fatigue detection is realized on the resource-constrained Raspberry Pi 4B device,which verifies its reliability in practical applications.

deep learningfatigue detectionMTCNNRaspberry Pi

刘星、文良华、成奎、陈波杰、张宇杰、于剑桥

展开 >

宜宾学院电子信息工程学院,四川宜宾 644000

宜宾学院三江人工智能与机器人研究院,四川宜宾 644000

宜宾学院计算机科学与技术学院,四川宜宾 644000

成都工业学院智能终端产业学院,四川宜宾 644000

展开 >

深度学习 疲劳检测 MTCNN 树莓派

2024

宜宾学院学报
宜宾学院

宜宾学院学报

CHSSCD
影响因子:0.185
ISSN:1671-5365
年,卷(期):2024.24(12)