首页|张量环分解和空谱全变分的高光谱图像恢复算法

张量环分解和空谱全变分的高光谱图像恢复算法

扫码查看
高光谱图像在采集和转换中会受到各种污染,目前在Tucker或CP上进行的多数去除噪声算法会改变信号固有的结构,对张量秩的最优估计非常困难.为此,提出基于张量环分解和空间光谱全变分的高光谱图像恢复模型:利用张量环分解的张量核范数和空间光谱全变分来约束低秩,更好地探索全局空间结构和相邻波段的频谱相关性,并利用增广拉格朗日算法求解此模型.数值实验表明,模型去除噪声后的图像清晰,PSNR、SSIM和FSIM三个指标均优于现有算法.
Hyperspectral Image Restoration Algorithm Based on Tensor Ring Decomposition and Spatial-spectral Total Variation
Hyperspectral images were subject to various pollutants during acquisition and conversion,and most noise removal algo-rithms currently used on Tucker or CP could alter the inherent structure of the signal,making it very difficult to estimate the opti-mal tensor rank.To this end,a hyperspectral image restoration model based on tensor ring decomposition tensor and spatial-spectral total variation was proposed:low rank was constrained by tensor ring decomposition tensor kernel norm and spatial-spectral total variation to better explore the global spatial structure and spectral correlation of adjacent bands,and the augmented Lagrangian algorithm was used to solve this model.Numerical experiments show that the model produces clear images after remov-ing noise,and the PSNR,SSIM,and FSIM metrics are all superior to existing algorithms.

tensor kernel normshyperspectral imagestensor ring decompositionspatial-spectral total variation

陈千、罗显康、谢巧玉、李霞

展开 >

宜宾学院理学部,四川宜宾 644000

张量核范数 高光谱图像 张量环分解 空间光谱全变分

2024

宜宾学院学报
宜宾学院

宜宾学院学报

CHSSCD
影响因子:0.185
ISSN:1671-5365
年,卷(期):2024.24(12)