首页|EMD分解与深度学习结合的温度序列时空建模

EMD分解与深度学习结合的温度序列时空建模

扫码查看
针对不同地区大气温度数据的复杂时空特征,提出一种基于经验模态分解(EMD)的温度序列时空建模方法.根据站点的经纬度坐标及站点温度的相关性建立图模型,对各个站点温度序列进行EMD分解,将原始数据分解为若干个模态函数;通过分析每个模态函数与原始数据的相关性,将不相关的模态函数分别相加,使用时空特征提取模块(GCN-LSTM)分别训练原数据和不相关数据,相减后输出,以捕捉数据的非线性时空关系.实验证明模型在多站点气温预测任务中,均方根误差较LSTM、GCN和GCN-LSTM模型分别下降了 1.368、1.043、0.795,平均绝对误差分别下降了 0.695、0.162 5和0.162 5.
Spatiotemporal Modeling of Temperature Series Combining EMD Decomposition and Deep Learning
To address the complex spatiotemporal characteristics of atmospheric temperature data across different regions,a spatio-temporal modeling method based on Empirical Mode Decomposition(EMD)is proposed.A graph model is established using the lati-tude and longitude coordinates of the stations and the correlations of the station temperatures.The temperature series at each sta-tion undergo EMD decomposition,breaking the original data into several intrinsic mode functions(IMFs).By analyzing the correla-tion between each IMF and the original data,uncorrelated IMFs are summed separately.A spatiotemporal feature extraction module(GCN-LSTM)is then used to train the original data and the uncorrelated data separately.The output,obtained by subtracting the re-sults,captures the nonlinear spatiotemporal relationships in the data.Experiments demonstrate that the model achieves a root mean square error reduction of 1.368,1.043,and 0.795 compared to the LSTM,GCN,and GCN-LSTM models,respectively,and a mean absolute error reduction of 0.695,0.1625,and 0.1625,respectively,in multi-station temperature prediction tasks.

Empirical Mode Decomposition(EMD)Graph Convolutional Network(GCN)Long Short-Term Memory Network(LSTM)temperature sequence spatiotemporal modeling

熊秋、彭龑

展开 >

四川轻化工大学自动化与信息工程学院,四川宜宾 644000

人工智能四川省重点实验室,四川宜宾 644000

经验模态分解(EMD) 图卷积网络(GCN) 长短期记忆网络(LSTM) 温度序列时空建模

2024

宜宾学院学报
宜宾学院

宜宾学院学报

CHSSCD
影响因子:0.185
ISSN:1671-5365
年,卷(期):2024.24(12)