首页|基于改进YOLOv5的钢材表面缺陷检测算法

基于改进YOLOv5的钢材表面缺陷检测算法

扫码查看
针对钢材表面缺陷检测中不同缺陷类别间尺寸差异导致检测准确性不足问题,提出一种基于改进YOLOv5的检测算法.该算法首先引入CA注意力机制模块到网络结构中,增强模型对有效样本信息的聚焦能力,同时抑制无关因素的干扰.此外,算法在空间金字塔池化(SPP)模块的基础上集成上下文卷积模块,旨在增强特征表达.利用数据集验证,证明本模型在识别不同种类钢材表面缺陷上表现卓越,平均精度均值(mAP)比原始YOLOv5算法提高5.2%,满足生产现场对钢材缺陷检测的实际需求.
Steel Surface Defect Detection Algorithm Based on Improved YOLOv5
In view of the problem of insufficient detection accuracy due to size difference between different defects during steel surface defect detection,this paper proposes the detection algorithm based on improved YOLOv5.By introducing CA attention mechanism module into the network structure,this algorithm helps to enhance the focusing ability of the model on valid sample information and restrains interference of irrelevant factors.In addition,the algorithm integrates context convolution module on the basis of Spatial Pyramid Pooling(SPP)module to enhance feature representation.Data set verification results show that the present model is excellent at identifying surface defects of different types of steel,with average precision average(mAP)increased by 5.2%compared with the original YOLOv5 algorithm,it can meet the practical needs of steel defect detection on the production site.

Steelsurface defectimproved YOLOv5

郝涌汀、王磊、向长春

展开 >

沈阳理工大学机械工程学院,辽宁 沈阳 110159

钢材 表面缺陷 改进YOLOv5

2024

一重技术
一重集团大连设计研究院有限公司

一重技术

影响因子:0.142
ISSN:1673-3355
年,卷(期):2024.(3)