首页|完全对换网络的限制连通度

完全对换网络的限制连通度

扫码查看
完全对换网络是基于Cayley图模型的一类重要互连网络.一个图G的k-限制点(边)连通度是使得G-F不连通且每个分支至少有k个顶点的最小点(边)子集F的基数,记作κκ(λκ).它是衡量网络可靠性的重要参数之一,也是图的容错性的一种精化了的度量.一般地,网络的k-限制点(边)连通度越大,它的连通性就越好.证明了完全对换网络CTn的2-限制点(边)连通度和3-限制点(边)连通度,具体来说:当n≥4时,κ2(CTn)=n(n-1)-2,κ3(CTn)=3n(n-1)/2-6;当n≥3时,λ2(CTn)=n(n-1)-2,λ3(CTn)=3n(n-1)/2-4.
The restricted connectivity of complete-transposition networks
Complete-transposition networks are a class of important Cayley graphs in networks design.The k-restricted vertex(edge)-connectivity of a graph G is the minimum cardinality of a set of vertices (edges) in G whose removal results in disconnected and each component has at least k vertices,denoted by κk(λk).The k-restricted vertex(edge)-connectivity is one of the most parameters to evaluate the reliability of a network,it is also a refined measure of the fault tolerance of the graph.In general,the larger the k-restricted vertex(edge)-connectivity of a network,the more reliable the network.The paper proves that 2-restricted vertex(edge)-connectivity and 3-restricted vertex(edge)-connectivity of complete-transposition networks,that is,when n ≥ 4,κ2 (CT,n) =n (n-1)-2,κ3 (CT,n) =3n(n-n)/2-6,when n ≥ 3,λ2(CT,n) =n(n-1)-2,λ3(CT,n) =3n(n-1)/2-4.

interconnection networksCayley graphscomplete-transposition networksrestricted vertex-connectivityrestricted edge-connectivity

王国亮、师海忠

展开 >

西北师范大学数学与统计学院,兰州730070

互连网络 Cayley图 完全对换网络 限制点连通度 限制边连通度

甘肃省自然科学基金

ZS991-A25-017-G

2013

运筹学学报
中国运筹学会

运筹学学报

CSTPCDCSCD北大核心
影响因子:0.25
ISSN:1007-6093
年,卷(期):2013.17(3)
  • 1
  • 5