首页|基于强乘积运算下图的广义和连通度指标上下界

基于强乘积运算下图的广义和连通度指标上下界

扫码查看
对于图G,令E(G)表示G的边集,令V(G)表示G的点集,dG(v)表示v的度.对于边e=uv,定义广义和连通度指标xα(e)=(dG(u)+dG(v))α,其中α为任一实数.本文先介绍了图的S,R,Q,T四种运算,然后给出了四种运算下的强乘积,并利用最大度最小度确定了其四种图的广义和连通度指标的上下界.
The sharp bounds on general sum-connectivity index of graphs for operations based on strong product
For a graph G,the edge set of graph G denoted by E(G),the vertex set of graph G denoted by V(G),let dG(v)denote the degree of v.For an edge e=uv,the general sum-connectivity index xα(e)=(dG(u)+dG(v))α,in which α is any real number.In current paper,we introduce firstly the four operations(S,R,Q,T)of the graph,then give the strong product under the four operations,and determine the upper and lower bounds of the general sum-connectivity index of the four graphs by using the maximum and minimum degrees.

general sum-connectivity indexstrong productfour new operationsF-sum

李志豪、朱焱

展开 >

华东理工大学数学学院,上海 200237

广义和连通度指标 强乘积 四种运算 F-和

国家自然科学基金

11671135

2024

运筹学学报
中国运筹学会

运筹学学报

CSTPCD北大核心
影响因子:0.25
ISSN:1007-6093
年,卷(期):2024.28(1)
  • 17