首页|基于改进YOLOv5的汽车车门装配工艺检测

基于改进YOLOv5的汽车车门装配工艺检测

扫码查看
汽车车门装配工作已实现流水线式的自动装配,但对于门板零件装配是否到位目前并无有效方案.针对此情况提出了一种基于YOLOv5网络优化的汽车门板装配检测网络,该网络实现对螺钉、焊点、扣件三类装配工艺的检测,可检测在相应装配点位上是否已正确安装.为提高对各装配件装配情况的检测精度,在YOLOv5网络中的卷积模块增加注意力机制,增强主干网络对于高频主干网络的特征学习;其次对原网络中的SPPF感受野扩展模块采用空洞卷积组构造不同大小的感受野范围丰富特征信息,并采用最大值池化层将对特征图中的高频特征信息进行增强,抑制背景噪声的干扰.经试验测试,优化后的网络相比于优化前的精确率(Precision)指标提升2.1%达97.4%,召回率(Recall)指标提升8.4%达97.0%,平均精度均值(mAP)指标提升5.9%达98.1%,有一定的实用性.
Automotive Door Assembly Process Inspection Based on Improved YOLOv5
The assembly work of car doors has achieved automatic assembly line style,but there is currently no ef-fective solution for whether the assembly of door panel parts is in place.A YOLO v5 network optimized automobile door panel assembly inspection network is proposed to address this situation.This network realizes the detection of three types of assembly processes:screws,welding points,and fasteners,and can detect whether they have been correctly installed at the corresponding assembly points.In order to improve the detection accuracy of the as-sembly status of various components,attention mechanism is added to the convolutional module in YOLO v5 net-work to enhance the feature learning of the backbone network for high-frequency backbone networks.Secondly,for the SPPF Receptive field expansion module in the original network,the hole convolution group is used to con-struct Receptive field ranges of different sizes to enrich the feature information,and the maximum pooling layer is used to enhance the high-frequency feature information in the feature map to suppress the interference of back-ground noise.After experimental testing,the optimized network has improved its Precision index by 2.1%to 97.4%,Recall index by 8.4%to 97.0%,and mAP index by 5.9%to 98.1%compared to before optimization,which has certain practicality.

industrial testingautomotive door panelsdeep learningobject detectionYOLO

计成睿

展开 >

合肥大学 人工智能与大数据学院,安徽 合肥 230601

工业检测 汽车门板 深度学习 目标检测 YOLO

2024

宜春学院学报
宜春学院

宜春学院学报

影响因子:0.271
ISSN:1671-380X
年,卷(期):2024.46(3)
  • 10