首页|基于CNN-LSTM神经网络的前视成像算法

基于CNN-LSTM神经网络的前视成像算法

扫码查看
雷达前视成像作为雷达成像领域的难点与重点,在自动驾驶、导航、精确制导等方面具有广阔的应用前景.传统的前视成像算法受限于天线孔径的宽度,无法实现高分辨率的成像,本文使用卷积神经网络(Convolutional Neural Networks,CNN)与长短期记忆(Long Short-Term Memory,LSTM)网络相结合实现前视成像中方位向的预测,首先介绍了扫描前视成像信号的类卷积模型及其病态性,利用脉冲压缩以及距离徙动校正对回波信号预处理,输入CNN-LSTM神经网络逐距离单元进行方位向估计.仿真结果表明:算法能有效提高前视成像的方位分辨率,实现前视成像的超分辨.
Forward-looking Imaging Algorithm Based on CNN-LSTM Neural Network
As a difficulty and focus in the field of radar imaging,radar forward-looking imaging has broad application prospects in automatic driving,navigation,precision guidance and so on.The traditional forward-looking imaging algorithm is limited by the width of the antenna aperture and cannot achieve high-resolution imaging.In this paper,CNN(Convolutional Neural Networks)neural network and LSTM(Long Short-Term Memory)neural network are combined to realize the prediction of azimuth in forward-looking imaging.Firstly,the convolution-like model of the scanning forward-looking imaging signal and its ill-posedness are introduced.The echo signal is preprocessed by pulse compression and range migration correction,and input into the CNN-LSTM neural network to perform azimuth estimation by range unit.The simulation results show that the algorithm can effectively improve the azimuth resolution of forward-looking imaging and realize the super-resolution of forward-looking imaging.

Forward-looking imagingDeep learningConvolutional neural networkIll-posed inverse problem

孙晓翰、李凉海、张彬

展开 >

北京遥测技术研究所 北京 100076

中国航天电子技术研究院 北京 100094

前视成像 深度学习 卷积神经网络 病态性逆问题

2024

遥测遥控
中国航天工业总公司第七0四研究所

遥测遥控

CSTPCD
影响因子:0.28
ISSN:
年,卷(期):2024.45(2)
  • 24