首页|基于样本增强和自动参数优化的高光谱目标检测方法

基于样本增强和自动参数优化的高光谱目标检测方法

扫码查看
基于深度学习的高光谱目标检测面临着样本质量不足、网络结构复杂、参数调整费力等问题,本文提出了一种具有数据增强和自动超参数优化的深度学习方法.为了解决样本质量不足的问题,本文引入了一种样本扩增策略.该策略利用端元提取和聚类技术直接从高光谱图像中获取大量背景像素,通过使用相减像素配对方法将这些像素与少量已知目标像素配对,获得大量标记的纯样本对,从而实现数据增强.此外,与大多数复杂的深度网络不同,本文设计了一个由12个卷积层组成的轻量级卷积神经网络(CNN).该网络专门设计用于高效快速地学习输入样本对与其对应标签之间的映射.结合粒子群优化算法,该网络具有超参数自动优化的能力,克服了参数调整费力的缺点,这使得网络能够根据来自不同高光谱图像的样本自动调整超参数,从而产生最优结果.对于测试像素,训练网络的输入是中心像素与其相邻像素之间的光谱差.当一个测试像素属于目标时,输出分数接近1,反之则接近0.在五个高光谱数据集上的实验结果表明:本文提出的方法明显优于现有的技术.
Hyperspectral Target Detection Based on Sample Enhancement and Automatic Parameter Optimization
Hyperspectral target detection based on deep learning faces challenges such as insufficient quality of samples,intri-cate network structures,and laborious parameter adjustment.In this paper,we propose a deep learning method with data augmenta-tion and automatic hyperparameter optimization.To tackle the issue of insufficient quality of samples,we introduce a sample aug-mentation strategy.The strategy utilizes endmember extraction and clustering techniques to directly acquire a large number of back-ground pixels from hyperspectral images.By pairing these with a small number of known target pixels using a phase-reducing pixel pairing approach,we obtain a large number of labeled pure sample pairs,thereby accomplishing data augmentation.In addition,dis-tinct from most complex deep networks,we designed a lightweight Convolutional Neural Network(CNN)comprised of 12 convolu-tional layers.This network is specifically engineered to efficiently and rapidly learn the mapping between input sample pairs and their corresponding labels.By incorporating the particle swarm optimization algorithm,this network possesses the capability to auto-matically optimize hyperparameters,overcoming the shortcomings of laborious parameter adjustment.This enables the network to automatically adjust hyperparameters based on samples from different hyperspectral images,thereby generating optimal results.For a test pixel,the input to the trained network is the spectral difference between the central pixel and its adjacent pixels.When a test pixel belongs to the target,the output score is closely align with the target label.Experimental results on five hyperspectral datasets demonstrate that our method significantly outperforms existing techniques.

HyperspectralTarget detectionData augmentationConvolutional neural network

刘浩、许明明、沈彪群、刘善伟、盛辉

展开 >

中国石油大学(华东)海洋与空间信息学院 青岛 266580

山东鲁邦地理信息工程有限公司 济南 250102

高光谱 目标检测 样本增强 卷积神经网络

国家自然科学基金山东省高校青年创新技术支持计划

417761822023KJ068

2024

遥测遥控
中国航天工业总公司第七0四研究所

遥测遥控

CSTPCD
影响因子:0.28
ISSN:
年,卷(期):2024.45(4)
  • 42