首页|基于CBAM-GRU的通信信号自动调制识别

基于CBAM-GRU的通信信号自动调制识别

扫码查看
本文研究了一种基于卷积注意力机制模块(CBAM)与门控循环单元网络(GRU)结合的CBAM-GRU分类模型,用于非合作通信系统中的自动调制识别技术.将信号预处理后的时域幅度值、相位值以及I/Q值合并,转换为输入采样值矩阵,进入网络进行信号分类识别.使用无线电数据集RadioML2016.10a进行仿真实验,并将CBAM-GRU模型与卷积神经网络(CNN)、长短期记忆网络(LSTM)、GRU、卷积长短时深度神经网络(CLDNN)进行比较.实验结果表明:CBAM-GRU模型的分类识别率达到92.79%,相较于对比模型分别提高了8.52%、1.84%、1.75%、8.61%,比传统的CNN或LSTM模型,在处理信号时能够更有效地捕捉时空特征,从而提高识别精度.
Automatic Modulation and Recognition of Communication Signals Based on CBAM-GRU
A CBAM-GRU classification model based on the combination of Convolutional Attention Mechanism Module(CBAM)and Gated Recurrent Unit(GRU)network is investigated for automatic modulation identification in non-cooperative com-munication systems.The pre-processed time-domain amplitude,phase and I/Q values of the signal are combined and converted into a matrix of input sample values,which are entered into the network for signal classification and identification.Simulations are con-ducted using the RadioML2016.10a radio dataset,and the CBAM-GRU model are compared with the Convolutional Neural Net-work(CNN),Long Short-Term Memory network(LSTM),GRU,and Convolutional Long Deep Neural Network(CLDNN).The re-sults indicates that the classification accuracy of the CBAM-GRU model reaches 92.79%,showing improvements of 8.52%,1.84%,1.75%,and 8.61%over the comparison models respectively.Compared to traditional CNN or LSTM models,the CBAM-GRU mod-el is more effective in capturing spatio-temporal features of sig-nals,thereby enhancing recognition accuracy.

Automatic modulation recognitionNon-cooperative communication systemsConvolutional block attention mecha-nismGated recurrent unit network

杨宵、姚爱琴、孙运强、石喜玲、张婉婷

展开 >

中北大学 信息与通信学院 太原 030051

自动调制识别 非合作通信系统 卷积注意力机制 门控循环单元网络

山西省基础研究计划资助项目

20210302123062

2024

遥测遥控
中国航天工业总公司第七0四研究所

遥测遥控

CSTPCD
影响因子:0.28
ISSN:
年,卷(期):2024.45(5)
  • 6