首页|一种改进选点及加窗处理的相位梯度自聚焦算法

一种改进选点及加窗处理的相位梯度自聚焦算法

扫码查看
相位梯度自聚焦(Phase Gradient Autofocus,PGA)算法被广泛应用于补偿合成孔径雷达(Synthetic Aperture Radar,SAR)图像的相位误差.PGA算法的处理流程中,选点和加窗这两步操作对于算法性能的影响非常大.传统的PGA算法常因选点质量不佳或窗宽估计有误而导致聚焦效果变差,收敛速度变慢.本文提出一种基于能量-信杂比最大准则的强点选择方法和一种自适应窗宽估计方法.利用能量和信杂比两个维度从图像数据中筛选出理想的孤立强散射点,结合并改进两种传统加窗方法自适应地估计窗宽,实现算法稳定性和收敛速度的提升.仿真和实测数据处理结果证实了本文算法的有效性.
Optimized Phase Gradient Autofocus Algorithm Based on Improved Point Se-lection and Windowing Processing
The Phase Gradient Autofocus(PGA)algorithm is widely used to compensate for phase errors in Synthetic Aperture Radar(SAR)images.In the processing flow of the PGA algorithm,the two-step operation of selecting points and adding windows has a significant impact on algorithm performance.Traditional PGA algorithms often suffer from poor point selection quality or in-correct window width estimation,leading to poor focusing effect and slower convergence speed.This article proposes a strong point selection method based on the maximum energy signal-to-noise ratio criterion and an adaptive window width estimation method.Using the dimensions of energy and signal-to-noise ratio,ideal isolated strong scattering points are selected from image data,and two traditional windowing methods are combined and improved to adaptively estimate the window width,achieving improved algo-rithm stability and convergence speed.The simulation and experimental data processing results confirm the effectiveness of the algo-rithm proposed in this paper.

AutofocusPhase gradient autofocusStrong point selectionWindow width estimation

刘建彬、周鹏、王影、张振华

展开 >

中国石油大学(华东)海洋与空间信息学院 青岛 266580

北京遥测技术研究所 北京 100076

北京航空航天大学 北京 100191

自聚焦 相位梯度自聚焦算法 强点选择 窗宽估计

青岛市科技惠民示范专项项目国家自然科学基金区域创新发展联合基金重点支持项目中国石油大学(华东)校级教学改革项目中国石油大学(华东)研究生精品示范课程建设项目

24-1-8-cspz-5-nshU22A20586CM2022067UPCYJP-2022-16

2024

遥测遥控
中国航天工业总公司第七0四研究所

遥测遥控

CSTPCD
影响因子:0.28
ISSN:
年,卷(期):2024.45(5)
  • 8