首页|基于大型语言模型微调技术的反诈骗信息识别方法研究

基于大型语言模型微调技术的反诈骗信息识别方法研究

扫码查看
针对反诈骗信息识别,对大型语言模型(LLMs)的微调技术进行了深入的实验研究.选取了3种不同规模的LLMs基础模型,并采用了LoRA和p-tuning v2 2种先进的微调技术,以适应特定的反诈骗信息识别任务.通过多个维度的实验评估,微调策略不仅能够显著提升模型在反诈骗信息识别上的性能,还能够在一定程度上保持模型的通用性.此外,探讨了LLMs在少样本情况下的学习能力,并分析了不同微调策略下的资源消耗情况.
Study on Anti-fraud Information Identification Method Based on Fine-tuning Techniques of Large Language Models
Aiming at the anti-fraud information identification,it conductes in-depth experimental research on fine-tuning techniques of large language models(LLMs).It selectes three LLMs base models of different scales and employes two advanced fine-tuning technologies,LoRA and p-tuning v2,to adapt to specific anti-fraud information identification tasks.Through experimental evaluations across multiple dimensions,fine-tuning strategies not only significantly enhances the models'performance in anti-fraud information identification,but also maintains the universality of the model to a certain extent.Additionally,it explores the learning capabilities of LLMs under low-sample conditions and analyzes the resource consumption under different fine-tuning strategies.

LLMsFine-tuning techniquesAnti-fraud information identificationLoRAp-tuning v2Few-shot learning

彭成智、谢园园、吕光旭

展开 >

中讯邮电咨询设计院有限公司,北京 100048

大型语言模型 微调技术 反诈骗信息识别 LoRA p-tuning v2 少样本学习

2024

邮电设计技术
中讯邮电咨询设计院有限公司

邮电设计技术

影响因子:0.647
ISSN:1007-3043
年,卷(期):2024.(8)