首页|AI大模型赋能网络流量分类概述

AI大模型赋能网络流量分类概述

扫码查看
提出一个通用的AI驱动的网络流量分类框架,阐述了所涉及的工作流程、分类目标、设计原则以及典型场景等,并提出了一个基于BERT的网络流量分类模型,通过将输入的分组净荷进行向量化嵌入,然后送入BERT进行预训练,用于实现流量数据的上下文理解并捕获双向特征,然后对接一个全连接网络对分类下游任务进行微调,从而实现流量分类.通过与AE、VAE、ByteSGAN 3个经典的流量分类深度学习模型在CICIDS2017公开数据集上进行对比,发现BERT的精度明显高于其他方法.
Overview of AI Big Model Empowering Network Traffic Classification
It introduces a comprehensive AI-driven framework for network traffic classification,delineating the workflow,classification objectives,design principles,and typical application scenarios.Additionally,it proposes a BERT-based model for network traffic classification by leveraging packet payload vectorization and embedding it into BERT for pre-training to achieve contextual comprehension of traffic data and capture bidirectional features.Subsequently,fine-tuning is conducted using a fully connected network to accomplish traffic classification tasks.Comparative analysis with three classical traffic classification deep learning models(AE,VAE,and ByteSGAN)on the CICIDS2017 public dataset demonstrates that BERT achieves significantly higher accuracy than other methods.

Network traffic classificationTraffic identificationIntrusion detectionBERTBig model

陈雪娇、付梦艺、王攀

展开 >

南京信息职业技术学院,江苏南京 210023

南京邮电大学,江苏南京 210003

流量分类 流量识别 入侵检测 BERT 大模型

国家自然科学基金

61972211

2024

邮电设计技术
中讯邮电咨询设计院有限公司

邮电设计技术

影响因子:0.647
ISSN:1007-3043
年,卷(期):2024.(9)
  • 1