首页|大模型数据扩增技术在输电线路智能监控中的应用研究

大模型数据扩增技术在输电线路智能监控中的应用研究

扫码查看
针对复杂场景下输电线路可视化监控中目标识别准确率不高、误检误报率较高的问题,提出了一种结合大模型的数据扩增和YOLOv10优化算法来提升复杂场景下目标识别准确率的实现方法.首先,针对样本数据数量短缺的问题,基于Stable-diffusion大模型进行数据扩增,丰富并增加了样本数量.其次,针对训练样本数量有限的情况,对YOLOv10算法进行改进,进一步强化图片特征的提取算法,优化目标识别算法,提升复杂自然场景下的目标识别准确率及性能.最终的实验结果表明,与现有的实现方法相比,针对复杂场景的输电线路的可视化监控,对目标识别的准确率从原有的52.6%提升至54.3%.
Research on the Application of Data Augmentation with Large Model in Visual Monitoring of Transmission Lines in Complex Scenarios
Aiming at the low object recognition accuracy and high rates of false detections and false alarms are common in the visual monitoring of transmission lines under complex scenarios,an combined method that leverages the data augmentation by large model with optimized YOLOv10 is proposed.Firstly,data augmentation is performed based on the Stable-diffusion large model to address the shortage of available sample data,which can enlarge the number of samples.Secondly,based on the limited number of training samples,the YOLOv10 algorithm is optimized by further enhancing the image feature extraction algorithm and optimizing the object recognition algorithm to improve its accuracy and performance.The final experimental results show that,compared to existing method,the proposed approach significantly improves the target recognition accuracy for visual monitoring of transmission lines in complex scenarios,from an original 52.6%to 54.3%.

Data augmentationObject recognitionYOLO

杨勇、万超伦、马建友、赵文杰、董振江

展开 >

江苏讯汇科技股份有限公司,江苏南京 211316

南京邮电大学,江苏南京 210003

数据扩增 目标识别 YOLO

2024

邮电设计技术
中讯邮电咨询设计院有限公司

邮电设计技术

影响因子:0.647
ISSN:1007-3043
年,卷(期):2024.(9)
  • 5