首页|图智能AI技术在基站流量预测中的探索与实验

图智能AI技术在基站流量预测中的探索与实验

扫码查看
5G网络以其高速率、广泛连接和低时延为新技术领域提供支持,但面临着严峻的能耗问题.研究了AI技术在提升基站能效方面的应用,提出了基于图神经网络的流量预测方法,考虑了流量数据的空间关联和时间依赖性.该方法结合图卷积网络和时序卷积模块,优化了基站流量分布,显著提升了流量预测准确性.准确的流量预测能够为基站关停策略提供科学依据,从而有效降低能耗,提升能源效率,减少成本,促进可持续发展.
Exploration and Experiment of Graph Intelligence AI Technology in Base Station Traffic Prediction
5G network provides support for new technology fields with its high speed,extensive connectivity,and low latency,but it faces a severe challenge in terms of energy consumption.It explores the application of AI technology in enhancing the energy efficiency of base stations,and proposes a traffic prediction method based on Graph Neural Networks that takes into account the spatial correlation and temporal dependency of traffic data.The method combines graph convolutional networks and 1-D convolution modules to optimize the distribution of base station traffic,which significantly improves the accuracy of traffic prediction.Accurate traffic prediction can provide scientific basis for base station shutdown strategies,which effectively reduce energy consumption,improve energy efficiency,reduce costs,and promote sustainable development.

5G base stationEnergy savingTraffic predictionArtificial intelligenceGraph neural network

李永、刘博、汪悦、王鑫、程新洲

展开 >

北京工业大学,北京 100124

新西兰梅西大学,新西兰

中国联通研究院,北京 100176

5G基站 节能 流量预测 人工智能 图神经网络

2024

邮电设计技术
中讯邮电咨询设计院有限公司

邮电设计技术

影响因子:0.647
ISSN:1007-3043
年,卷(期):2024.(9)
  • 4