首页|基于图神经网络和XGBoost模型的物联网卡智能监测系统

基于图神经网络和XGBoost模型的物联网卡智能监测系统

扫码查看
随着物联网业务的快速发展,复杂多样的应用场景给物联网卡的运营管理带来了巨大的挑战,传统的管理手段已经无法满足物联网卡使用的监管要求.首先总结物联网卡异常使用现状及管理手段,分析现有异常识别方法的不足,提出了基于图神经网络和Count-Min Sketch算法的物联网卡画像特征融合构建方法,以及基于XGBoost算法的异常流量识别模型.基于以上技术,实现了对物联网卡的智能监测,提升了违规识别的准确率和召回率.
Intelligent Monitoring System for IoT Network Cards Based on Graph Neural Network and XGBoost Model
With the rapid development of IoT service,the complex and diverse application scenarios have brought huge challenges to the operation and management of IoT network cards,and traditional management methods are no longer able to meet the regula-tory requirements for the use of IoT network cards.Firstly,it summarizes the current situation and management methods of abnormal usage of IoT network cards,analyzes the shortcomings of existing recognition methods for abnormal use of IoT net-work cards,and proposes a method for IoT network card profile feature fusion construction based on graph neural network(GNN)and Count-Min Sketch algorithm,and the abnormal traffic recognition model based on XGBoost algorithm.Based on the above technologies,an intelligent monitoring system for IoT network cards has been implemented,which improves the precision and recall of abnormal behavior recognition.

IoT cardAbnormal trafficGNNFeature fusionXGBoost algorithm

李博、沈潋

展开 >

中国电信集团有限公司,北京 100032

国家电网有限公司大数据中心,北京 100052

物联网卡 异常流量 图神经网络 特征融合 XGBoost算法

2024

邮电设计技术
中讯邮电咨询设计院有限公司

邮电设计技术

影响因子:0.647
ISSN:1007-3043
年,卷(期):2024.(9)
  • 9