首页|基于Transformer的数据中心机房三维温度场快速重构和预测方法

基于Transformer的数据中心机房三维温度场快速重构和预测方法

扫码查看
机房内部气流组织的合理性关系到数据中心制冷系统的能耗、IT设备的性能和热环境的安全.传统气流组织模拟性能一般在小时级,使用场景受限,难以满足实时运营对机房温度场预测的时效性需求.提出一种基于Transformer的机房三维温度场快速重构和预测方法,通过融合深度学习模型与传统CFD,将气流组织预测时间降低至分秒级,全局平均预测精度误差控制在5%以内,从而使CFD仿真有效地从设计阶段应用到运维阶段,支撑数据中心的智慧运营业务.
Fast Reconstruction and Prediction Method of Three-dimensional Temperature Field in Data Center Room Based on Transformer
The rationality of airflow organization inside the data center is related to the energy consumption of the cooling system,the performance of IT equipment,and the safety of the thermal environment.Traditional CFD simulation is generally at the hourly level,with limited usage scenarios,making it difficult to meet the timeliness requirements of real-time operation for temperature field prediction.It presents a fast reconstruction and prediction method for the three-dimensional temperature field of computer rooms based on Transformer.By integrating deep learning with traditional CFD,the prediction time can be reduced to the level of minutes and seconds,and the global average prediction error can be controlled within 5%,which enables CFD simulation to be effectively applied from the design stage to the operation and maintenance stage,supporting intelligent operation services.

Data centerTemperature distribution predictionTransformerMachine learningCFD

朱旭、贺晓、高健、闫若飞、陈俊丞、姚贵策

展开 >

中讯邮电咨询设计院有限公司,北京 100048

北京航空航天大学,北京 100191

数据中心 温度场预测 Transformer 机器学习 计算流体力学

2024

邮电设计技术
中讯邮电咨询设计院有限公司

邮电设计技术

影响因子:0.647
ISSN:1007-3043
年,卷(期):2024.(10)