首页|基于深度时序学习的数据中心热风险智能检测与预警研究

基于深度时序学习的数据中心热风险智能检测与预警研究

扫码查看
数据中心内部设备产热量巨大,制冷系统运行不佳会导致热量堆积产生热风险.提出了一种基于Bi-LSTM的深度学习网络的数据中心热风险管理方法,通过对机房计算节点的温度场数据进行预处理和热风险标识,使用历史数据对数据中心机房计算节点热风险进行预警.针对机房内复杂的热环境,使用统计学方法从时空2个维度判定热风险标签,用于网络的训练,并将所得模型与传统机器学习模型进行对比,所提方法对热风险的预测精度可达99.07%,比传统机器学习模型的预测精度提升6.6%,可实现可靠的热风险预警管理.
Research on Intelligent Detection and Early Warning of Thermal Hazard in Data Center Based on Deep Time-series Learning Models
The equipments in data center generate enormous heat.Weak cooling system may cause thermal accumulation,leading to thermal hazard in data center.It proposes a thermal risk management method in data center based on Bi-LSTM deep learning network.By preprocessing the temperature field data of the computing nodes in the data center and identifying the thermal risks,historical data is used to warn the thermal risks of the computing nodes in the data center.Aiming at the complex thermal environment in the computer room,statistical spatial-temporal analysis is employed to determine thermal risk labels from two dimensions of time and space for network training.The proposed method is compared to the traditional SVM model,and the results show that the proposed method provides thermal hazard prediction of 99.07%accuracy,with 6.6%improvement compared to SVM,which presents reliable prediction ability of thermal hazard.

Data centerThermal hazardDeep learningBi-LSTM

贺晓、朱旭、闫若飞、吴帅、刘湃、吴江风

展开 >

中讯邮电咨询设计院有限公司,北京 100048

中国联合网络通信集团有限公司,北京 100033

数据中心 热风险 深度学习 Bi-LSTM

2024

邮电设计技术
中讯邮电咨询设计院有限公司

邮电设计技术

影响因子:0.647
ISSN:1007-3043
年,卷(期):2024.(10)