首页|利用人工智能对光传输链路劣化隐患的预测研究

利用人工智能对光传输链路劣化隐患的预测研究

扫码查看
随着网络运维要求的提高,传统的被动故障处理和人工巡检已无法满足需求,因此提出了基于AI的主动预防方法.首先分析了传统巡检手段的局限性,随后提出一个AI预测光传输链路劣化隐患的设计思路,该思路包括数据采集、任务管理、AI预测和风险呈现及上报等模块.实际应用效果表明,AI回归算法预测KPI的准确率可达96%,而高风险隐患预测准确率为75%,显示了AI技术在网络运维中的潜力和提升空间.研究结果表明,AI技术能够有效识别传统巡检难以发现的缓慢劣化类链路风险隐患,提升网络运维的主动性和效率.
Research on Prediction of Optical Transmission Link Deterioration Using Artificial Intelligence
As network O&M requirements increase,traditional passive fault handling and manual inspection cannot meet the requirements.Therefore,AI-based proactive prevention methods are proposed.It firstly analyzes the limitations of traditional inspection methods.Then,a design idea of AI prediction of optical transmission link deterioration is proposed,which includes data collection,task management,AI prediction and risk presentation and reporting modules.The actual application results show that the accuracy of the AI regression algorithm in predicting KPIs reaches 96%,and the accuracy of predicting high risks is 75%,which shows the potential and improvement space of the AI technology in network O&M.The research results indicate that the AI technology can effectively identify slow-deterioration link risks that are difficult to detect in traditional inspection,improving the initiative and efficiency of network O&M.

Transmission hidden troubleIntelligent analysisArtificial intelligenceBig dataNetwork O&M

王瑜、朱宏、周莹、沙升升

展开 >

中国联合网络通信集团有限公司,北京 100033

传输隐患 智能分析 人工智能 大数据 网络运维

2024

邮电设计技术
中讯邮电咨询设计院有限公司

邮电设计技术

影响因子:0.647
ISSN:1007-3043
年,卷(期):2024.(12)