首页|通信大模型:技术进展与案例研究

通信大模型:技术进展与案例研究

Telecom Large Models:Technological Advances and Case Studies

扫码查看
随着大模型技术不断向领域定制化、多模态融合及多任务处理能力深化,通信大模型在赋能网络智能化转型、高效优化资源配置、以及提升用户体验等方面展现出前所未有的潜力和价值.首先从云侧、边缘及端侧三方面系统性地综述了通信大模型的分类体系及主要网络功能.进而,探讨了通信大模型的预训练与参数微调策略,特别是强调了任务导向的参数微调和交互式协作推理等关键技术.接着,通过分析具体案例的成功实践,如中国移动九天大模型、中国联通元景大模型和中国电信星辰大模型,深入剖析了通信大模型在精细化网络管理、高效数据传输策略制定及用户体验全面升级等方面的核心优势与巨大潜力.最后,展望了通信大模型在未来网络智能化演进、创新服务模式探索及运营效率提升等方面的广阔研究前景,同时也总结了诸多前沿技术挑战,包括数据隐私与安全的严格保障、模型泛化性与鲁棒性的增强、实时处理能力的优化以及系统可扩展性的改善等.
As foundation model technology continues to advance toward domain customization,multimodal integration,and multitask processing,Telecom large models are demonstrating unprecedented potential and value in enabling network intelligence transformation,optimizing resource allocation efficiently,and enhancing user experience.This paper systematically reviews the taxonomy and primary network functions of Telecom large models from the perspectives of cloud,edge,and terminal layers.Furthermore,it explores pretraining and parameter fine-tuning strategies for these models,with particular emphasis on task-oriented fine-tuning and interactive collaborative inference techniques.Through the analysis of successful practical cases,such as China Mobile's Jiutian Model,China Unicom's Yuanjing Model,and China Telecom's Xingchen Model,this study delves into the core advantages and significant potential of Telecom large models in refined network management,efficient data transmission strategy formulation,and comprehensive user experience enhancement.Finally,the paper envisions the broad prospects of Telecom large models in advancing future network intelligence,exploring innovative service paradigms,and improving operational efficiency.It also highlights key technological challenges,including stringent guarantees for data privacy and security,enhancement of model generalization and robustness,optimization of real-time processing capabilities,and improvement of system scalability.

communication networkslarge modelsnetwork intelligencemodel optimization

倪万里、秦志金、孙浩峰、郑景桁、田辉、陶晓明

展开 >

清华大学电子工程系,北京 100084

北京邮电大学网络与交换技术全国重点实验室,北京 100876

通信网络 大模型 网络智能化 模型调优

2025

移动通信
广州通信研究所(中国电子科技集团公司第七研究所)

移动通信

影响因子:0.47
ISSN:1006-1010
年,卷(期):2025.49(1)