首页|AI赋能的语义通信系统信道自适应技术研究

AI赋能的语义通信系统信道自适应技术研究

Channel Adaptation Techniques for AI-Driven Semantic Communication Systems

扫码查看
基于人工智能(AI)驱动的语义通信系统在面对动态变化的无线信道环境时,性能往往会显著下降.目前,现有方法通过给联合信源信道编码外挂神经网络模块来处理信道状态信息.然而,虽然这些方法能够在变化的信道条件下提高系统性能,但是外挂模块却带来了额外的模型参数与计算负担,增加了编解码延迟.针对这一问题,首先研究最新Mamba模型固有特性,推导了其对于初始状态的闭式响应,并从其闭式响应中发现了对于初始状态信息的遗忘特点.基于此发现,提出了一种内生式信道自适应方法.该方法通过将信道状态信息引入到模型初始状态,并在模型遗忘信道状态信息时重新将信道状态信息注入到状态空间,实现了无需额外计算与参数的情况下,使得模型能够感知信道状态并自适应地进行编码,从而在不同信道状态条件下提升系统性能.
Semantic communication systems driven by artificial intelligence often experience significant performance degradation in dynamic wireless channel environments.Existing approaches typically address this issue by integrating neural network modules with joint source-channel coding to process channel state information(CSI).While these methods improve system performance under varying channel conditions,the added modules introduce extra model parameters and computational overhead,increasing encoding-decoding latency.To address this challenge,we investigate the inherent properties of the latest Mamba model and derive its closed-form response to initial states.Our analysis reveals a characteristic forgetting behavior for initial state information.Based on this discovery,we propose an endogenous channel adaptation method.By incorporating CSI into the model's initial state and reinjecting CSI into the state space when it is forgotten,the proposed method enables the model to adaptively encode without additional computational or parameter overhead.This approach significantly enhances system performance under diverse channel conditions.

6Gsemantic communicationjoint source-channel codingchannel adaptation

吴桐、李金喜、陈智勇、陶梅霞

展开 >

上海交通大学,上海 200240

中国航空无线电电子研究所,上海 200241

6G 语义通信 联合信源信道编码 信道自适应

2025

移动通信
广州通信研究所(中国电子科技集团公司第七研究所)

移动通信

影响因子:0.47
ISSN:1006-1010
年,卷(期):2025.49(1)