首页|激光雷达与高光谱成像技术数据融合研究进展

激光雷达与高光谱成像技术数据融合研究进展

扫码查看
近年来,为提高地物分类精度,突破单一传感器的技术擎制,弥补单一数据源应用的局限性,多源遥感数据融合的成为了遥感领域众多学者关注的研究热点.高光谱遥感技术的光学影像同激光雷达点云数据的融合技术在技术层面为提升地物识别与分类的精度上提供了一种可行方案,打破了单一传感器的技术上限,为 目标三维空间—光谱信息一体化获取提供了一种新的解决途径,同时为高光谱激光雷达成像技术研究奠定基础.本文回顾了激光雷达与高光谱成像数据融合发展历程,论述其在特征级和决策级的主要融合方法和研究进展,将常用特征级融合和决策级融合方法进行详细介绍,并对最新几种研究算法进展进行小结和概述,探讨了其面临的挑战和未来发展与应用前景,最后对激光雷达和高光谱成像数据融合未来发展做出系统展望.
Research Progress in Data Fusion of LiDAR and Hyperspectral Imaging Technology
In recent years,in order to improve the classification accuracy of ground objects,break through the technical system of single sensor,and make up for the limitations of single data source application,multi-source remote sensing data fusion has become a research hotspot concerned by many scholars in the field of remote sensing.The fusion technology of optical image and LiDAR point cloud data of hyperspectral remote sensing technology provides a feasible scheme to improve the accuracy of ground object recognition and classification at the technical level,breaks the technical upper limit of single sensor,and provides a new solution for the integrat-ed acquisition of target three-dimensional space-spectral information.At the same time,it lays a foundation for the research of hyperspectral LiDAR imaging technology.This paper reviews the development history of Li-DAR and hyperspectral imaging data fusion,discusses the main fusion methods and research progress at the fea-ture level and decision level,introduces the commonly used feature level fusion and decision level fusion meth-ods in detail,summarizes the latest research algorithms and discusses their challenges and future development and application prospects.Finally,the future development of LiDAR and hyperspectral imaging data fusion is prospected systematically.

Hyperspectral Remote SensingLiDARData fusion

王书伟、舒清态、马旭、肖劲楠、周文武

展开 >

西南林业大学林学院,云南 昆明 650224

新疆大学地理与遥感科学学院,新疆乌鲁木齐 830046

高光谱遥感 激光雷达 数据融合

国家重点研发计划云南省农业联合专项重点项目国家自然科学基金青年基金新疆维吾尔自治区教育厅人才类天池博士计划中国博士后科学基金面上项目新疆大学博士启动基金

2023YFD2201205202301BD070001-00242201390TCBS2021272021M702748620321021

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(1)
  • 94