首页|融合空—天遥感数据的毛竹林叶绿素含量反演模型对比研究

融合空—天遥感数据的毛竹林叶绿素含量反演模型对比研究

扫码查看
毛竹(Phyllostachys edulis)是我国南方集约经营广泛且十分重要的森林资源之一,叶绿素含量(CCI,chlorophyll content index)是反映植物健康状况和生长情况的重要指标,实现毛竹林叶绿素含量遥感反演对监测毛竹林健康程度具有重要意义.本研究以毛竹为对象,基于卫星遥感影像与无人机多光谱数据,通过运用HSV(Hue-Saturation-Value)变换、GS(Gram-Schmidt Pan Sharpening)变换、PCA(Principal Component Analysis)变换 3种方式,实现Landsat 8 多光谱影像与无人机(UAV,Unmanned Aerial Vehicle)高分辨率单波段影像数据融合;选取8种植被指数,利用K 邻近(KNN,k-Nearest Neighbor)回归、随机森林(RF,Random Forest)回归和 CatBoost 回归 3 种机器学习模型构建毛竹林叶片叶绿素单位含量反演模型.结果表明:①就融合效果而言,GS为最优模型,其变换均值、标准差、平均梯度联合熵、空间频率均最高,分别为73.407 8、80.672 9、29.6992、9.765 5、74.876 9;②在基于融合多光谱数据、Landsat 8多光谱数据和无人机数据验证集上,最优算法均为 RF 算法(R2 分别为 0.687 6、0.576 1、0.425 4,RMSE 分别为 2.918 4 μg/cm2、3.559 5 µg/cm2、3.974 5 μg/cm2).③基于融合数据的叶绿素含量反演效果优于仅使用Landsat 8数据和无人机数据的反演效果.本研究耦合多源遥感数据实现毛竹林叶绿素含量遥感反演,可为动态监测毛竹林健康情况提供科学参考.
Comparative Study on Chlorophyll-content Inversion Models of Bamboo forest based on Space-sky Remote Sensing Data
Phyllostachys edulis is one of the most important and intensively managed forest resources in south-ern China,Chlorophyll Content Index(CCI)is a crucial indicator of plant health and growth.It is of great signif-icance to realize remote sensing inversion of chlorophyll content in Moso Bamboo forest to monitor the health de-gree of it.Firstly,three ways of transform including HSV(Hue-Saturn-value)transform、GS(Gram-Schmidt Pan Sharpening spectral Sharpening method)transform and PCA(Principal Component Analysis)were used to make sure that Landsat 8 multispectral image and Unmanned Aerial Vehicle(UAV)high resolution single-band image data were fused well together.Secondly,8 kinds of vegetation cover indices were then constructed based on multi-source remote sensing data,moreover,three machine learning models including K-nearest Neighbor(KNN)regression,Random Forest(RF)regression as well as CatBoost regression were applied to ensure vegetation index and chlorophyll content could be fitted.Finally,the inversion model of chlorophyll unit content in Moso Bamboo forest was then established.The results indicated that:(1)In terms of fusion effect,it turned out that GS was the optimal model cause various evaluation parameters derived from it such as mean value、standard deviation、mean gradient joint entropy and spatial frequency were all the highest,which were 73.407 8、80.672 9、29.699 2、9.765 5 and 74.876 9,respectively.(2)In the validation set based on fused multi-spectral data,Landsat 8 multispectral data and UAV data,RF algorithm turned to be the best algorithm(RF al-gorithm's corresponding R2 is 0.687 6、0.576 1、0.425 4,respectively,while the corresponding RMSE were 2.918 4 μg/cm2、3.559 5 μg/cm2、3.974 5 μg/cm2.respectively).(3)The inversion effect of chlorophyll content could be better when based on fusion data than Landsat 8 data and UAV data.This study coupled with multi-source remote sensing data to realize remote sensing retrieval of chlorophyll content in Phyllostachys pubesculus forest,which can provide scientific reference for dynamic monitoring of phyllostachys pubesculus forest health.

Multi-source remote sensing dataImage fusionChlorophyllUnmanned Aerial VehicleMachine learning

宋凌寒、刘小杰、张仓皓、钟霜雯、刘健、余坤勇、王帆

展开 >

福建农林大学林学院,福建福州 350002

3S技术与资源优化利用福建省高校重点实验室,福建福州 350002

多源遥感数据 图像融合 叶绿素 无人机 机器学习

国家自然科学基金青年科学基金

41901387

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(1)
  • 35