首页|基于特征筛选结合PSO-BPNN和GA-BPNN算法的土壤重金属高光谱定量反演

基于特征筛选结合PSO-BPNN和GA-BPNN算法的土壤重金属高光谱定量反演

扫码查看
以连州地区土壤重金属含量为研究对象,分析包括土壤原始光谱在内的经过数学变换后的光谱数据与重金属含量之间的相关性,再采用VISSA-IRIV算法进行光谱特征提取,分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)、粒子群优化BP神经网络、遗传算法优化BP神经网络模型,对比获取土壤重金属元素Cr、Cu含量最优反演模型.结果表明:VISSA-IRIV算法实现了对光谱数据的高效降维;BPNN模型预测效果明显优于PLSR模型;经过优化的BP神经网络模型反演精度和稳定性得到了极大地提升,其中Cr、Cu元素的最佳反演模型组合分别为FD-GA-BPNN(R2=0.87、RMSE=13.82、RPD=2.95)、SNV-FD-PSO-BPNN(R2=0.92、RMSE=4.25、RPD=3.41).该研究对土壤重金属含量的准确、快速分析提供了一种有效的方法,对实现土壤重金属污染治理具有重要的现实意义.
Quantitative Hyperspectral Inversion of Soil Heavy Metals based on Feature Screening Combined with PSO-BPNN and GA-BPNN Algorithms
The correlation between the mathematically transformed spectral data including the original spectrum of soil and the heavy metal content was analyzed,and then the VISSA-IRIV algorithm was used for spectral feature extraction,and Partial Least Squares Regression(PLSR),BP Neural Network(BPNN),particle swarm optimization BP neural network,genetic algorithm optimization BP neural network models were devel-oped to compare and obtain the optimal inversion models of Cr and Cu contents of soil heavy metals.The results showed that the VISSA-IRIV algorithm achieved efficient dimensionality reduction of the spectral data;the pre-diction effect of the BPNN model was significantly better than that of the PLSR model;the inversion accuracy and stability of the optimized BP neural network models were greatly improved,and the best inversion model combinations for Cr and Cu elements were FD-GA-BPNN(R2=0.87,RMSE=13.82,RPD=2.95),and SNV-FD-PSO-BPNN(R2=0.92,RMSE=4.25,RPD=3.41),respectively.This study provides an effective method for the accurate and rapid analysis of soil heavy metal content,which is of great practical significance for the realization of soil heavy metal pollution control.

Heavy metalsHyperspectralNeural Network

田雨欣、王正海、谢鹏

展开 >

中山大学 地球科学与工程学院,广东 珠海 519080

重金属 高光谱 神经网络

国家自然科学基金广州市科技计划

41572316201804010274

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(1)
  • 17