首页|PSO-DF:基于高光谱的水稻叶片氮含量估测方法

PSO-DF:基于高光谱的水稻叶片氮含量估测方法

扫码查看
水稻叶片氮含量的估测对实现田间施肥高效、水稻高产的目标具有重要意义.提出了一种基于粒子群深度森林的水稻叶片氮素估测方法(Particle Swarm Optimization-Deep Forest,PSO-DF),通过粒子群优化算法筛选深度森林模型(Deep Forest,DF)参数中最优的级联层估计器数量和估计器中的树数,从而提高深度森林模型在水稻氮素数据集上的回归精度.为验证PSO-DF的有效性,研究采用无人机搭载高光谱图像采集器获取宁夏粳稻高光谱图像,并对同期水稻叶片进行取样、测量、分析,并提取与水稻叶片氮含量相关系数最高的3个特征波段,将其作为光谱特征与水稻氮含量数据进行反演,对PSO-DF、原模型DF以及其他6种常见机器学习算法构建的水稻氮含量估测模型进行了对比.结果表明:PSO-DF算法构建的模型效果优于其他模型,其R2 和RMSE指标均明显优于其他模型.
PSO-DF:A Hyperspectral Model for Estimating Nitrogen Content in Rice Leaves
The estimation of rice leaf nitrogen content is important to achieve the goals of high rice yield and effi-cient fertilization in the field.In this paper,we propose a Particle Swarm Optimization-Deep Forest(PSO-DF)model-based method for estimating the nitrogen content of rice leaves,which determines the number of es-timation layers in the optimal cascade and the optimal estimator in the Deep Forest(DF)model parameters by a particle swarm optimization algorithm.The number of trees in the optimal estimator is determined by the parti-cle swarm optimization algorithm to improve the regression accuracy of the DF model on Rice datasets.To veri-fy the effectiveness of PSO-DF,this paper used an unmanned aircraft with a hyperspectral image collector to obtain hyperspectral images of Ningxia japonica rice,and sampled,measured,and analyzed the rice leaves at the same period,and extracted the three feature bands with the highest correlation coefficients with rice leaf ni-trogen content,which were used as spectral features for inversion with rice nitrogen content data,and compared PSO-DF,the original model DF,and six other common The rice nitrogen content estimation models construct-ed by machine learning algorithms were compared.The results show that the model constructed by the PSO-DF algorithm outperforms the other models,and its R2 and RMSE indexes are significantly better than those of the other models.

RiceNitrogen estimationHyperspectral remote sensingDeep forest for particle swarm optimiza-tionMachine learning

车淼、王海荣、徐玺、孙崇

展开 >

北方民族大学 计算机科学与工程学院,宁夏 银川 750021

国家民委图像图形智能处理重点实验室,宁夏 银川 750021

水稻 氮素估测 高光谱遥感 粒子群优化的深度森林 机器学习

宁夏回族自治区教育厅高等学校科研项目北方民族大学校级科研项目

NYG20220512021XYZJK06

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(2)
  • 21