首页|基于面向对象CNN和RF的不同空间分辨率遥感影像农业大棚提取研究

基于面向对象CNN和RF的不同空间分辨率遥感影像农业大棚提取研究

扫码查看
遥感技术已成为快速有效获取农业大棚覆盖信息的重要途径,但遥感影像空间分辨率大小对提取精度的影响具有双重性,选择适宜分辨率影像具有重要意义.以南方农业塑料大棚为研究对象,利用GF-1、GF-2和Sentinel-2形成1~16 m间6个不同空间分辨率影像数据集,基于面向对象影像分析方法(Object-Based Image Analysis,OBIA),分别利用面向对象卷积神经网络(Convolutional Neural Network,CNN)方法和随机森林(Random forest,RF)方法开展大棚提取,分析提取精度和不同方法下的差异性.结果表明:①CNN和RF方法下,农业大棚的提取精度随着影像分辨率降低总体呈下降趋势,在1~16 m的影像上均能检测到农业大棚;②相对于RF方法,CNN方法对影像空间分辨率要求更高,在1~2 m分辨率下,CNN方法有更少的漏提和误提,但在4m及更低分辨率下,RF方法的适用性更高;③2 m分辨率影像是大棚信息提取的最佳空间分辨率,可经济有效地实现大棚监测.
Different Spatial Resolutions based on Object-oriented CNN and RF Research on Agricultural Greenhouse Extraction from Remote Sensing Images
Remote sensing technology has become an important way to obtain agricultural greenhouse coverage information quickly and effectively.But the spatial resolution size of remote sensing images has a dual influence on the extraction accuracy,and it is important to select suitable resolution images.Taking the southern agricul-tural plastic greenhouses as the research object,GF-1,GF-2 and Sentinel-2 are used to form six different spa-tial resolution image datasets between 1 and 16 m.Based on Object-Based Image Analysis(OBIA),we use the Convolutional Neural Network(CNN)and Random Forest(RF)methods to extract the canopy and ana-lyze the extraction accuracy and the difference between the methods.The results show that:(1)the extraction accuracy of agricultural greenhouses under CNN and RF methods generally decreases as the image resolution de-creases,and agricultural sheds can be detected on images from 1m to 16 m;(2)the CNN method requires high-er spatial resolution than the RF method,and the CNN method has fewer missed and false extractions at 1~2 m resolution,but at 4 m and lower resolutions,the RF method is more applicable;(3)the 2 m resolution im-age is the best spatial resolution for shed information extraction,which can realize shed monitoring economically and effectively.

Agricultural greenhouse extractionObject-oriented CNN methodRandom forestSpatial resolu-tionHigh-resolution remote sensing image

林欣怡、汪小钦、汤紫霞、李蒙蒙、吴瑞姣、黄德华

展开 >

福州大学 空间数据挖掘与信息共享教育部重点实验室,福建 福州 350108

福州大学 数字中国研究院(福建),福建 福州 350108

福建省地质测绘院,福建 福州 350011

农业大棚提取 面向对象CNN方法 随机森林 空间分辨率 高分辨率遥感数据

福建省科技创新基金中央引导地方科技发展专项

2022C00242017L3012

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(2)
  • 39