首页|基于面向对象CNN和RF的不同空间分辨率遥感影像农业大棚提取研究

基于面向对象CNN和RF的不同空间分辨率遥感影像农业大棚提取研究

Different Spatial Resolutions based on Object-oriented CNN and RF Research on Agricultural Greenhouse Extraction from Remote Sensing Images

扫码查看
遥感技术已成为快速有效获取农业大棚覆盖信息的重要途径,但遥感影像空间分辨率大小对提取精度的影响具有双重性,选择适宜分辨率影像具有重要意义.以南方农业塑料大棚为研究对象,利用GF-1、GF-2和Sentinel-2形成1~16 m间6个不同空间分辨率影像数据集,基于面向对象影像分析方法(Object-Based Image Analysis,OBIA),分别利用面向对象卷积神经网络(Convolutional Neural Network,CNN)方法和随机森林(Random forest,RF)方法开展大棚提取,分析提取精度和不同方法下的差异性.结果表明:①CNN和RF方法下,农业大棚的提取精度随着影像分辨率降低总体呈下降趋势,在1~16 m的影像上均能检测到农业大棚;②相对于RF方法,CNN方法对影像空间分辨率要求更高,在1~2 m分辨率下,CNN方法有更少的漏提和误提,但在4m及更低分辨率下,RF方法的适用性更高;③2 m分辨率影像是大棚信息提取的最佳空间分辨率,可经济有效地实现大棚监测.
Remote sensing technology has become an important way to obtain agricultural greenhouse coverage information quickly and effectively.But the spatial resolution size of remote sensing images has a dual influence on the extraction accuracy,and it is important to select suitable resolution images.Taking the southern agricul-tural plastic greenhouses as the research object,GF-1,GF-2 and Sentinel-2 are used to form six different spa-tial resolution image datasets between 1 and 16 m.Based on Object-Based Image Analysis(OBIA),we use the Convolutional Neural Network(CNN)and Random Forest(RF)methods to extract the canopy and ana-lyze the extraction accuracy and the difference between the methods.The results show that:(1)the extraction accuracy of agricultural greenhouses under CNN and RF methods generally decreases as the image resolution de-creases,and agricultural sheds can be detected on images from 1m to 16 m;(2)the CNN method requires high-er spatial resolution than the RF method,and the CNN method has fewer missed and false extractions at 1~2 m resolution,but at 4 m and lower resolutions,the RF method is more applicable;(3)the 2 m resolution im-age is the best spatial resolution for shed information extraction,which can realize shed monitoring economically and effectively.

Agricultural greenhouse extractionObject-oriented CNN methodRandom forestSpatial resolu-tionHigh-resolution remote sensing image

林欣怡、汪小钦、汤紫霞、李蒙蒙、吴瑞姣、黄德华

展开 >

福州大学 空间数据挖掘与信息共享教育部重点实验室,福建 福州 350108

福州大学 数字中国研究院(福建),福建 福州 350108

福建省地质测绘院,福建 福州 350011

农业大棚提取 面向对象CNN方法 随机森林 空间分辨率 高分辨率遥感数据

福建省科技创新基金中央引导地方科技发展专项

2022C00242017L3012

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(2)
  • 39