首页|融合多尺度低秩表示与双向递归滤波的高光谱图像分类

融合多尺度低秩表示与双向递归滤波的高光谱图像分类

扫码查看
针对高光谱图像信噪比较低导致图像分类精度较差的问题,提出一种融合多尺度低秩表示与双向递归滤波的高光谱图像分类方法.首先,对高光谱图像进行不同尺度的超像素分割,获得空间邻域信息并得到分割图像;其次,在各尺度分割区域内执行低秩表示和主成分分析(Principal Component Analysis,PCA)降维,低秩表示可对分割区域内光谱间高相关性进行低秩约束,移除混合噪声;再次,利用双向递归滤波进一步消除图像中噪声和地物细节纹理;最后,根据支持向量机对各尺度特征图像的分类结果采用多数投票方法得到最终分类.实验在Indian Pines、PaviaU和Salinas公开数据集上进行,各地物类别随机选取10个训练样本,结果表明:与仅利用光谱信息的分类方法(支持向量机、PCA)对比,该方法分别在 3 个数据集上总体精度平均提高了 32.03%、28.04%和 16.80%;与空间—光谱残差网络和顶点成分分析网络的分类方法对比,平均提高10.99%、8.45%和7.08%;与其他空—谱联合分类方法对比,平均提高8.28%、18.77%和10.19%,证明了本文方法能在训练样本较少的情况下取得更优的总体分类精度.
Fusion of Multiscale Low-rank Representation and Two Way Recursive Filtering for Hyperspectral Image Classification
Aiming at the problem of poor image classification accuracy caused by low signal-to-noise ratio of hy-perspectral images,a hyperspectral image classification method that combines multi-scale low-rank representa-tion and two way recursive filtering is proposed.First,perform superpixel segmentation algorithm on hyperspec-tral images at different scales to obtain the spatial neighborhood information and segmented images.Next,low-rank representation and PCA(Principal Component Analysis)dimensionality reduction are performed in the seg-mented regions of each scale,the low-rank representation can impose low-rank constraints on the high correla-tion between spectra in the segmented regions and remove mixed noise.Then,two way recursive filtering is used to further eliminate noise in the image.Last,according to the classification results of the feature images of each scale by the Support Vector Machine,the final classification is obtained by the majority voting method.The results showed that:Compared with the classification methods using only spectral information(Support Vector Machine and PCA),the overall accuracy of the proposed method is improved by 32.03%,28.04%and 16.80%on average.Compared with the deep learning classification method of spatial-spectral residual network and vertex component analysis network,the average improvement is 10.99%,8.45%and 7.08%.Compared with other spatial-spectral classification methods,the average improvement is 8.28%,18.77%and 10.19%,it is proved that the proposed method can achieve better overall classification accuracy with fewer training samples.

Hyperspectral image classificationSuperpixel segmentationLow-rank representationTwo way recursive filteringMajority voting

陆美、李佳田、李文、胡明洪、杨佳欣

展开 >

昆明理工大学 国土资源工程学院,云南 昆明 650000

高光谱图像分类 超像素分割 低秩表示 双向递归滤波 多数投票

国家自然科学基金

41561082

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(2)
  • 27