首页|ICESat-2数据辅助的AW3D30 DEM精度评价和修正

ICESat-2数据辅助的AW3D30 DEM精度评价和修正

扫码查看
AW3D30 DEM数据是应用最为广泛的基础地理信息数据之一,其精度直接影响一系列衍生产品的可靠性和严谨性.因此,AW3D30 DEM数据的精度评价与修正一直是研究热点.然而,常规高精度验证数据获取困难且成本较高,难以应用在大范围研究区域.ICESat-2数据全球覆盖、高程精度达亚米级,可为AW3D30 DEM数据精度评价和修正提供可靠的参考数据源.为此,以河南省为研究区域,利用ICESat-2数据从坡度、坡向、地貌类型、土地利用类型角度评估AW3D30 DEM高程精度,并提出一种随机森林-长短期记忆网络混合模型修正AW3D30 DEM.实验表明:AW3D30 DEM高程精度随坡度、海拔和地形起伏度的增大而降低;坡向对高程精度的影响较小,误差分布无明显规律性;在裸地和耕地土地利用类型精度更高,在林地土地利用类型精度较差.随机森林—长短期记忆网络混合模型能够显著降低AW3D30 DEM的平均绝对误差和均方根误差,提升AW3D30 DEM精度,可为其他DEM数据修正模型的建立提供参考.
Accuracy Validation and Improvement of AW3D30 DEM Aided by ICESat-2 Data
AW3D30 DEM data is one of the most widely used basic geographic information data,and its accura-cy directly affects the reliability and rigor of a series of derivative products.Therefore,the accuracy validation and improvement of AW3D30 DEM data has always been a research hotspot..However,conventional high-precision verification data are difficult to obtain and expensive to apply in a wide range of research areas.With global coverage and sub-meter elevation accuracy,ICESat-2 data can provide reliable reference data source for AW3D30 DEM data accuracy validation and improvement.Therefore,this paper takes Henan Province as the study area,and uses ICESat-2 data to validate the elevation accuracy of AW3D30 DEM from the perspective of slope,aspect,geomorphic type and land use type and proposes the Random Forest-Long Short Term Mem-ory Network(RF-LSTM)hybrid model to improve AW3D30 DEM.The results show that the elevation accu-racy of AW3D30 DEM decreases with the increase of slope,elevation and topographic relief.The slope direc-tion has less influence on AW3D30 DEM's elevation accuracy,and the error distribution has no obvious regu-larity.The accuracy is higher in bare land and cultivated land,and worse in woodland land.The RF-LSTM hy-brid model can significantly reduce the mean absolute error and root mean square error of AW3D30 DEM,im-prove the accuracy of AW3D30 DEM,and provide a reference for the establishment of other DEM data im-provement models.

AW3D30DEMICESat-2RFLSTMTerrain factors

郑迎辉、张艳、王涛、赵祥、刘少聪

展开 >

信息工程大学 地理空间信息学院,河南 郑州 450001

AW3D30 DEM ICESat-2 随机森林 长短期记忆网络 地形因子

装备技术基础科研项目

192WJ22007

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(3)
  • 13