首页|基于Sentinel-1A SAR的洞庭湖汛期水体面积动态变化监测研究

基于Sentinel-1A SAR的洞庭湖汛期水体面积动态变化监测研究

扫码查看
洞庭湖水体面积动态变化监测对防洪、维系生态系统的稳定及生物多样性具有重要意义.以经典Unet网络模型和创新性HRNet网络模型为代表的深度学习技术已成为遥感图像信息获取的高效途径,实验以Sentinel-1A SAR影像为主要数据源,定性、定量地分析了Sentinel-1双极化水体指数法(Sentinel-1 Dual-Polarized Water Index,SDWI)、面向对象分类法、UNet网络模型和HRNet网络模型4种方法的水体提取效果,并基于最佳水体提取方法对洞庭湖2016~2021年汛期(4~10月)水体面积进行时空变化特征分析.结果表明:①HRNet和Unet网络模型较传统方法具有更优的水体提取效果,其中,HRNet网络模型在抑噪、抗阴影等方面表现更佳,F1分数、误判率和平均交并比分别为0.961 6、0.007 8和0.958 6;②汛期洞庭湖水体面积在月际变化上呈现出"涨—丰—退"的变化特征,湖面从4~5月份开始扩张,6~8月份水域面积维持在较高水平,此后由于来水减少,9~10月的水体面积逐步减小.研究期间所监测到的最大水体面积为 2020年 7月 30日的 2 263.90 km2;③洞庭湖汛期的水体淹没频率从湖体中心和干流向外逐渐降低,不同湖区的淹没频率分布格局不同,东洞庭湖"湖心高四周低",南洞庭湖和西洞庭湖"南高北低".综上所述,Sentinel-1A SAR影像与深度学习技术的结合应用可以实现洞庭湖水体信息高效获取与水面面积高频监测,为高动态湖泊水域监测提供了一种新思路.
Dynamic Monitoring of Water Area in Dongting Lake during Flood Season based on Sentinel-1A SAR Data
Monitoring the dynamic changes of water area in Dongting Lake is of great significance for flood con-trol,ecosystem stability and biodiversity.The deep learning algorithm represented by the classic Unet the inno-vative HRNet has become an efficient way to obtain remote sensing image information.Taking Sentinel-1A SAR image as the main data source,this paper qualitatively and quantitatively analyzes the water extraction re-sults of SDWI index method(Sentinel-1 Dual-Polarized Water Index,SDWI),object-oriented classification method,UNet network model and HRNet network model.Based on the best water extraction method,the tem-poral and spatial variation characteristics of water area in the flood season(April to October)of Dongting Lake from 2016 to 2021 are analyzed.The results show that:① The deep learning algorithm represented by HRNet and Unet has better water extraction effect than traditional methods.Among them,HRNet has superior perfor-mance in noise suppression and shadow resistance,and the F1 score,MRate and MIoU are 0.961 6,0.007 8 and 0.958 6,respectively.② During the flood season,the water area of Dongting Lake shows the characteris-tics of"increase-full-decrease"in the monthly variation.The lake surface begins to expand from April to May,and the water area maintained at a high level from June to August.Since then,due to the decrease of in-flow,the water area gradually decreases from September to October.The 2 263.90 km2 at July 30,2020 is the largest water area monitored during the study period.③ The submerged frequency of water body in flood season of Dongting Lake gradually decreases from the center of the lake body and the main stream.The distribution pat-terns of submerged frequency in different lake areas are different.The submerged frequency of East Dongting Lake is higher than that of South Dongting Lake and West Dongting Lake.In summary,the combination of Sen-tinel-1A SAR image and deep learning technology can realize the efficient acquisition of water information and high-frequency monitoring of the water surface area at Dongting Lake,providing a new idea for the high dynam-ic lake water monitoring.

Dongting LakeWater areaSentinel-1AThe deep learning algorithmHRNet

张雨林、蒋昌波、隆院男、闫世雄

展开 >

长沙理工大学 水利与环境工程学院,湖南 长沙 410114

洞庭湖水环境治理与生态修复湖南省重点实验室,湖南 长沙 410114

湖南工业大学,湖南 株洲 412007

洞庭湖 水体面积 Sentinel-1A 深度学习 HRNet

国家自然科学基金项目国家自然科学基金项目湖南省水利科技项目湖南省重点研发计划项目

5183900252079010XSKJ2019081-452020SK2130

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(3)
  • 18