首页|基于改进Unet模型的无人机影像两阶段草地退化指示物种分类

基于改进Unet模型的无人机影像两阶段草地退化指示物种分类

扫码查看
针对退化指示物种植株体积小、草种间形态特征相似易造成混合像元等问题,根据所获取低空无人机数据,提出一种基于目标检测和语义分割的两阶段分类方法,其次对于分割模型进行轻量化改进.采用结构重参数化RepVGG网络替代Unet主干网络,在编码阶段导入高效通道注意力机制ECA,在下采样环节提升模型的特征提取能力,实现轻量化特征提取,块结构使用ESE模块,避免通道信息的损失.改进后的分割模型对于锡林浩特典型草原的冷蒿和银灰旋花两类草地退化指示物种有很好的分类效果,MIoU可以达到0.91,相比原始Unet模型提升0.11左右.实验结果表明:无人机数据以及两阶段分类方法可以很好地进行草地退化指示物种分类,提出的轻量化改进模型效果良好.
Two-stage Grassland Degradation Indicator Species Classification based on Improved Unet Model for UAV Images
Aiming at the problems of small plant size of degraded indicator species and mixed pixels caused by similar morphological characteristics between grass species,a two-stage classification method based on object detection and semantic segmentation is proposed according to the obtained low-altitude UAV data.Secondly,the segmentation model is lightweight improved.The RepVGG network with structural reparameterization is used to replace the Unet backbone network.The efficient channel attention mechanism ECA is introduced in the coding stage,and the feature extraction ability of the model is improved in the down-sampling link to achieve lightweight feature extraction.The block structure uses the ESE module to avoid the loss of channel informa-tion.The improved segmentation model has a good classification effect on the two types of grassland degrada-tion indicator species of Artemisia frigida and Convolvulus ammannii in the typical grassland of Xilinhot.The MIoU can reach 0.91,which is about 0.11 higher than the original Unet model.The experimental results show that the UAV data and the two-stage classification method can classify the grassland degradation indicator spe-cies well,and the proposed lightweight improved model has a good effect.

Indicator species of grassland degradationObject detectionSemantic segmentationTwo-stageLightweightingClassification

陈志程、万华伟、万凤鸣、高吉喜、孙林、杨斌

展开 >

生态环境部卫星环境应用中心,北京 100094

中国环境科学研究院,北京 100012

山东科技大学 测绘与空间信息学院,山东 青岛 266000

山东长光禹辰信息技术与装备(青岛)有限公司,山东青岛 266000

展开 >

草地退化指示物种 目标检测 语义分割 两阶段 轻量化 分类

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(5)