首页|基于深度学习的热带水稻种植区域遥感智能提取方法研究——以海南省海口市为例

基于深度学习的热带水稻种植区域遥感智能提取方法研究——以海南省海口市为例

扫码查看
水稻是我国重要的粮食作物,海南是我国主要的热带水稻种植与育种区域之一.目前海南热带区域水稻种植监测存在自动化程度低、人工工作量大,以及准确率不高的问题.以海南省海口市为实验区域,基于吉林一号、北京二号、World View、高景一号等高分辨率多光谱卫星遥感影像,结合外业核查信息,建立了海南热带区域一套多源、多尺度的高分辨率多光谱水稻种植区样本库,并利用DeepLab-V3+卷积神经网络模型进行训练,提出了热带区域水稻种植区域遥感智能解译方法.实验结果显示基于DeepLab-V3+卷积神经网络模型的水稻智能提取准确率达到了 81.9%,召回率为86.7%.结果表明:利用解译样本库训练的卷积神经网络模型可以准确提取热带水稻种植区域,该方法可为采用高分辨率多光谱遥感影像提取热带区域水稻种植区提供新的方法参考.
Research on Remote Sensing Intelligent Extraction Method of Tropical Rice Planting Area based on Deep Learning:A Case Study of Haikou City,Hainan Province
The cultivation and breeding of rice in Hainan,one of the primary tropical regions in China,play a crucial role in meeting the country's demand for this essential food crop.Currently,there are several challenges in monitoring rice cultivation in the tropical region of Hainan,including limited automation,excessive work-load,and low accuracy.In this study,we selected Haikou City in Hainan Province as our experimental area.By utilizing high-resolution multi-spectral satellite remote sensing images such as Jilin-1,Beijing-2,WorldView,and Gaojing-1 along with field verification data,we established a comprehensive database consisting of multi-source and multi-scale samples to accurately identify rice planting areas within the tropical region of Hainan.We employed the DeepLab-V3+convolutional neural network model for training purposes and proposed an intelli-gent remote sensing interpretation method specifically tailored for identifying rice planting areas within the tropi-cal region.Experimental results demonstrated that our approach achieved an impressive accuracy rate of 81.9%with a recall rate of 86.7%when extracting rice intelligently based on the DeepLab-V3+convolutional neural network model.These findings highlight that by training a convolutional neural network model using our inter-pretive sample database,it becomes possible to accurately extract regions where tropical rice is cultivated from high-resolution multi-spectral remote sensing imagery—a methodology that can serve as a valuable reference for future studies on extracting information related to tropical rice cultivation.

Deep learningConvolutional neural networksRice extractionMultispectralTropics

王春晓、邢增招、卢金莎、曹飞、孙建欣、蔡晓靓、刘晓娟、熊小青

展开 >

自然资源部海南基础地理信息中心,海南海口 570203

生态环境部卫星环境应用中心,北京 100094

深度学习 卷积神经网络 水稻提取 多光谱 热带区域

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(5)