首页|基于FrFT与Kalman滤波的机动目标序列ISAR成像算法

基于FrFT与Kalman滤波的机动目标序列ISAR成像算法

扫码查看
序列逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)指雷达对目标在较长一段时间内连续观测,近实时生成目标的ISAR图像序列.通过这些图像序列能够充分提取目标的散射信息和运动状态变化信息,对目标监测、跟踪和识别有很大帮助.研究充分利用相邻帧间 目标运动的连续性,联合分数阶傅里叶变换(Fractional Fourier Transform,FrFT)和卡尔曼(Kalman)滤波技术,提出一种新的机动 目标序列ISAR成像算法.该算法对方位向信号进行FrFT,通过搜索FrFT最佳能量聚集对应旋转角实现对方位向信号调频率(Azimuthal Chirp Rate,ACR)的测量,然后使用Kalman滤波技术得到ACR的最优估计值,实现对方位向信号精确的相位补偿.基于当前帧Kalman滤波得到的ACR最优估计值可以减小下一帧FrFT旋转角的搜索范围,提高计算效率.通过实测数据验证了该算法的有效性.相比常用的FrFT参数估计算法和PGA算法,该算法在成像质量和计算效率上均展现了优势.
A Novel Sequential ISAR Imaging Algorithm for Maneuvering Target based on Kalman Filter Integrated with FrFT
Sequential Inverse Synthetic Aperture Radar(ISAR)refers to that the radar continuously observing a non-cooperative maneuvering targets during a long period and generating a sequence of ISAR images nearly real time.According to these image sequences,the scattering information and motion state change information of the target can be fully extracted,which is very helpful for target monitoring,tracking and identification.Sequen-tial ISAR imaging of maneuvering targets often requires fine phase compensation.Using the classical algorithm to compensate the phase for each frame individually is computationally intensive and takes a long time to pro-cess.In practice,the interval between two adjacent frames of the sequential ISAR is short and the change of the target's motion state is small.In this paper,a new algorithm for sequential ISAR imaging of maneuvering tar-gets is proposed by making full use of the continuity of target motion between adjacent frames and combining Fractional Fourier Transform(FrFT)and Kalman filtering techniques.The algorithm performed FrFT on the azimuthal signal,and achieved the measurement of Azimuthal Chirp Rate(ACR)by searching for the best ener-gy aggregation of FrFT corresponding to the rotation angle.The optimal estimate of the ACR is then obtained using Kalman filtering to achieve accurate phase compensation of the azimuthal signal.The optimal estimate of ACR based on the Kalman filtering of the current frame can reduce the search range of the FrFT rotation angle in the next frame and improve the computational efficiency.The effectiveness of the proposed algorithm is veri-fied by real radar experiment.Compared with the classical FrFT parameter estimation algorithm and PGA algo-rithm,the proposed algorithm has excellent efficiency and can realize sequential ISAR imaging with better fo-cusing effect.

Radar imagingInverse Synthetic Aperture Radar(ISAR)Kalman FilterFractal Fourier Trans-form(FrFT)

陈思言、张云华、杨杰芳、董晓

展开 >

中国科学院空天信息创新研究院航天微波遥感系统部,北京 100094

中国科学院国家空间科学中心 中国科学院微波遥感技术重点实验室,北京 100190

中国科学院大学 电子电气与通信工程学院,北京 100049

逆合成孔径雷达 卡尔曼滤波 分数阶傅里叶变换

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(5)