首页|基于MODIS-EVI2与集成学习的森林火烧迹地面积预测

基于MODIS-EVI2与集成学习的森林火烧迹地面积预测

扫码查看
在林火救援中,根据火灾早期阶段预测最终燃烧面积,可有效指导火灾救援.然而,以往研究采用归一化差值植被指数(Normalized Difference Vegetation Index,NDVI)作为输入指标,其对土壤反射率敏感,数据噪声大.因此两波段增强植被指数(Two-band Enhanced Vegetation Index,EVI2)被使用以准确预测野火过火面积.此外,针对单一机器学习预测算法抗干扰能力差的问题,一种基于堆叠泛化(Stacking)集成学习的Stacking-XRSK模型被提出.结果表明:使用EVI2使模型R2较NDVI提高6.05%,MAE和MSE分别降低0.88%和0.41%.相比于单一模型,使用Stacking-XRSK模型的R2最高,高出范围在2.8%~11.06%之间,MAE、MSE和AOC最低.验证了利用EVI2代替NDVI预测火烧迹地面积的可行性和准确性,同时表明Stacking模型能在充分发挥单一基模型优势的基础上提高模型的泛化能力,为森林火灾安全管理与及时扑救提供科学的参考.
Prediction of Forest Burned Area based on MODIS-EVI2 and Ensemble Learning
In forest fire rescue,predicting the final burning area based on the early stages of the fire can effective-ly guide fire rescue.However,previous studies have used Normalized Difference Vegetation Index(NDVI)as an input indicator,which is sensitive to soil reflectance and has high data noise.Therefore,the Two-band En-hanced Vegetation Index(EVI2)is used to accurately predict the area burned by wildfires.In addition,to ad-dress the issue of poor anti-interference ability of a single machine learning prediction algorithm,a Stacking-XRSK model based on stacking ensemble learning is proposed.The results showed that using EVI2 increased R2 by 6.05%compared to NDVI,while reducing MAE and MSE by 0.88%and 0.41%,respectively.Com-pared with the single model,the Stacking-XRSK model has the highest R2,ranging from 2.8%to 11.06%,and MAE,MSE,and AOC are the lowest.The feasibility and accuracy of using EVI2 instead of NDVI to pre-dict the area of burnt areas have been verified.At the same time,the Stacking model can improve its generaliza-tion ability while fully leveraging the advantages of a single base model.This study provides scientific reference for forest fire safety management and timely firefighting.

Forest burned areaTwo-band enhanced vegetation indexPrediction modelEnsemble learningMachine learning

冯俊辰、董昊、韩鹏、李远斌、刘靖宇、丁云鸿

展开 >

School of Computer Science and Information Engineering,Harbin Normal University,Harbin 150025,China

哈尔滨师范大学计算机科学与信息工程学院,黑龙江哈尔滨 150025

森林火烧迹地面积 两波段增强植被指数 预测模型 集成学习 机器学习

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(5)