首页|基于GEE云平台的三江平原水稻种植区作物提取与监测研究

基于GEE云平台的三江平原水稻种植区作物提取与监测研究

扫码查看
及时、准确获取水稻长势信息对科学指导农业发展和宏观拟定农业决策起着至关重要的作用.基于2014~2022年三江平原Landsat 8遥感影像数据,通过谷歌地球引擎(Google Earth Engine,GEE)云平台提取该地区水稻种植面积并分析其变化趋势,利用变异系数法对3种特征指数(NDVI、EVI和LSWI)客观赋权并构建水稻长势监测指标(Rice Growth Index,RGI),应用年际比较差值模型评价2022年较2014~2021年三江平原的水稻长势情况并分析水稻种植区自分蘖期至抽穗灌浆期的时空变化和产量趋势.结果表明:①2014~2021年三江平原水稻种植面积整体呈增长趋势,增长面积超过5 000 km2.②2022年6~8月三江平原各市(县)的水稻长势状况较常年同期段呈"分蘖期持平,拔节孕穗期最佳,抽穗灌浆期较好"的稳步提升态势,且东部、中北部地区长势要相对优于西部、南部地区,东北部地区长势最佳.③2022年水稻生长季产量变化趋势推断为"部分地区减产歉收,多数地区高产丰收,整体为稳步增产趋势".研究结果可为农业部门指导农事活动和国内水稻长势遥感监测与产量估算业务提供科学依据.
Study on Crop Extraction and Monitoring in Rice Growing Area of Sanjiang Plain based on GEE Cloud Platform
Timely and accurate acquisition of rice growth information plays an important role in guiding agricul-tural development and formulating agricultural policy.In this paper,based on the MODIS and Landsat8 remote sensing image data of Sanjiang Plain from 2014 to 2022,the Google Earth Engine(GEE)cloud platform was used to extract the rice planting area and analyze its change trend.Three characteristic indexes(NDVI,EVI and LSWI)were objectively weighted by coefficient of variation method,and Rice Growth Index(RGI)was constructed.The interannual difference model was used to evaluate the rice growth in 2022 compared with the perennial(2014~2021),and to analyze the spatio-temporal variation and yield trend from tillering stage to fill-ing stage in the Sanjiang Plain.The results showed as follows:(1)From 2014 to 2021,the rice planting area in Sanjiang Plain showed an overall increasing trend,with an increasing area of more than 5 000 km2.(2)From June to August 2022,the rice growth in all cities and counties in Sanjiang Plain showed a steady upward trend of"equal tillering stage,best jointing booting stage,and better heading and filling stage",and the growth in the eastern and northern parts was better than that in the western and southern parts,and the northeastern part showed the best growth.(3)The change trend of rice yield in the 2022 growing season is inferred to be"poor harvest in some areas,high harvest in most areas,and the overall trend of steady increase".The results can pro-vide a scientific basis for agriculture department to guide agricultural activities and domestic rice growth monitor-ing and yield estimation by remote sensing.

GEECoefficient of variation methodRice growth indexDifference modelSpatio-temporal vari-ationYield trend

左小康、刘嘉骏、冯胜梅、郭殿繁、李苗

展开 >

国防科技大学 气象海洋学院,湖南 长沙 410073

哈尔滨师范大学 地理科学学院,黑龙江 哈尔滨 150025

东北师范大学 地理科学学院,吉林 长春 130024

GEE 变异系数法 水稻长势指标 差值模型 时空变化 产量趋势

2024

遥感技术与应用
中国科学院遥感联合中心

遥感技术与应用

CSTPCD北大核心
影响因子:0.961
ISSN:1004-0323
年,卷(期):2024.39(5)