首页|基于双流多模态多层融合网络的地基云分类方法

基于双流多模态多层融合网络的地基云分类方法

扫码查看
地基云的准确分类对于天气预报、航空航天等多个领域具有重要意义.近年来,深度学习在地基云分类领域取得了卓越的成果,但除地基云的视觉特征外,地基云的辅助特征,即地基云多模态信息,对于地基云分类也有重要作用.针对地基云多模态特征信息的挖掘和融合研究,提出了 一种基于双流多模态多层融合网络(dual-flow multi-modal multi-layer fusion network,DMMFN)的地基云分类方法,首次将多模态信息分开传递进不同子网络,并在特征层进行异构特征融合,最终该模型在多模态地基云数据集上得到85.70%的高准确率.实验结果表明,所提出的DMMFN网络模型能够有效地将地基云多模态信息与视觉特征结合,提升地基云分类的准确率.
Ground-based Cloud Classification Method Based on Dual-flow Multi-modal Multi-layer Fusion Network
The accurate classification of ground-based cloud is of great significance to many fields such as weather forecasting,aerospace and so on.In recent years,deep learning has achieved remarkable achievements in the classification of ground-based cloud.However,in addition to the visual features of ground-based cloud,the auxiliary features of ground-based cloud,namely the multi-modal information of ground-based cloud,also play an important role in the classification of ground-based cloud.In order to mine and integrate the multi-modal feature information of ground-based cloud,this study designs a ground-based cloud classification method based on dual-flow multi-modal multi-layer fusion network(DMMFN).Firstly,multi-modal information is separately transmitted into different sub-networks.Secondly,heterogeneous feature fusion is carried out in the feature layer.Finally,the model achieves a high accuracy rate of 85.70%on the multimodal ground-based cloud dataset.The experimental results show that the proposed DMMFN network model can effectively combine ground-based cloud multi-modal information with visual features,and improve the accuracy of ground-based cloud classification.

ground-based cloud classificationconvolutional neural networkattention mechanismmulti-modal informationfeature fusion

王敏、李晟、庄志豪、周树道、王康

展开 >

南京信息工程大学电子与信息工程学院,南京 210044

安徽建筑大学电子与信息工程学院,合肥 230009

国防科技大学气象与海洋学院,长沙 410003

地基云分类 卷积神经网络 注意力机制 多模态信息 特征融合

国家自然科学基金国家自然科学基金安徽省高等学校杰出青年科研项目江苏省研究生科研与实践创新计划

41775165417750392023AH020022KYCX23_1364

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(1)
  • 22