首页|大幅面高分辨率光学遥感影像的水体半自动提取

大幅面高分辨率光学遥感影像的水体半自动提取

扫码查看
针对大幅面高分辨率光学遥感影像因背景复杂、水体内部以及周边环境变化差异等因素导致的水体提取不完整和误提取问题,提出一种水体(湖泊和水道)半自动提取方法.首先,根据水体分布将大幅面影像划分为多个具有重叠边界的子影像块,并在其中以矩形框的形式标记感兴趣的水体;然后,由矩形框为模板计算此类水体的光谱特征,以其为匹配项实现子影像块水体的粗提取;最后,利用水体区域的形态特征对粗提取结果进行精细化处理.与基于局部二值模式和分割的水体提取方法作对比,对含有不同水体的GF-2影像进行了测试,从定性和定量两方面对提取结果进行比较和分析,结果表明了该方法的优越性.
Semi-automatic Extraction of Water Body from Large-scale High-resolution Optical Remote Sensing Imagery
Aiming at the problems of incomplete and incorrect water body extraction of large-scale high-resolution optical remote sensing image due to the complex background,the variation of water body and its surrounding environment,a semi-automatic extraction method for water bodies(lakes and waterways)is proposed.Firstly,the large-scale image is divided into several sub-image blocks with overlapping boundary by water body distribution,and the interested water bodies are marked in the form of rectangular boxes within them.Then,the spectral features of such water bodies are calculated using rectangular boxes as templates,and are further used as a matching term to achieve coarse extraction of sub image blocks of water bodies.Finally,the morphological features of the water body region are used to refine the rough extraction results.To validate the proposed method,GF-2 images containing different water bodies are tested using a local binary patterns and segmentation-based water body extraction method,and the results are compared and analyzed from qualitative and quantitative aspects.The results show the superiority of the proposed method.

water bodysemi-automatic extractionlarge-scaleimage divisionhigh-resolutionmorphological feature

杨蕴、高松峰、李玉、周玉石、张云诗

展开 >

河南城建学院测绘与城市空间信息学院,河南平顶山 467000

河南理工大学 自然资源部矿山时空信息与生态修复重点实验室,河南焦作 454003

辽宁工程技术大学测绘与地理科学学院,辽宁阜新 123000

水体 自动提取 大幅面 影像划分 高分辨率 形态特征

国家自然科学基金自然资源部矿山时空信息与生态修复重点实验室开放基金

41301479KLM202309

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(1)
  • 14