首页|应用卷积神经网络VGG16的星载GNSS-R海冰检测

应用卷积神经网络VGG16的星载GNSS-R海冰检测

扫码查看
针对全球卫星导航系统反射计(global navigation satellite system-reflection,GNSS-R)海冰检测中延迟-多普勒图(delay-Doppler map,DDM)数据噪声大、消融期精度低等问题,提出将VGG16卷积神经网络模型应用于海冰检测.通过深层的网络结构提取DDM多层次特征进行海冰海水分类,以提高海冰检测的精度和稳定性.实验结果表明,与美国国家海洋和大气管理局地表类型数据对比,所提出的基于VGG16海冰检测方法检测准确率为98.02%,有效提升了海冰检测的准确率和稳定性.
Sea Ice Detection Using Spaceborne GNSS-R Data by VGG16
To address the problems of high noise and low accuracy in the melting period of delay-Doppler map(DDM)data in global navigation satellite system-reflection(GNSS-R)sea ice detection,the VGG16 convolutional neural network model is proposed to be applied to sea ice detection.The multi-level features of DDM are extracted by deep network structure to improve the accuracy and stability of sea ice detection.The experimental results show that the detection accuracy of the proposed VGG16-based sea ice detection method is 98.02%compared with the National Oceanic and Atmospheric Administration(NOAA)surface type data,which effectively improves the accuracy and stability of sea ice detection.

sea ice remote sensingsea ice detectionspaceborne GNSS-Rconvolutional neural networkdelay-doppler mapNOAA

胡媛、华曦帆、刘卫、江志豪

展开 >

上海海洋大学工程学院,上海 201306

上海海事大学商船学院,上海 201306

海冰遥感 海冰检测 星载GNSS-R 卷积神经网络 延迟-多普勒图 NOAA

国家自然科学基金

52071199

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(2)