首页|地基森林点云单木检测的特征提取与组合方法

地基森林点云单木检测的特征提取与组合方法

扫码查看
针对基于点云特征进行单木检测的方法缺少对特征的重要性评估和选择等问题,提出一种体素特征参与单木检测的特征提取与组合的方法.首先,根据森林中不同类别的结构差异和空间分布特点提出一组体素特征,结合常用的三维、二维、格网以及强度等基础特征实现树干点提取.然后,提出一种基于单木检测结果的特征选择方法用于确定适合相似林分结构的最佳特征组合.在3块不同森林样地上进行实验,结果表明:加入体素特征后,树干点提取精度分别提高7.3%、11.6%、9.5%,单木检测精度分别提高0.4%、2.6%、0.7%;与基于单点分类结果的特征选择方法以及其他研究中的特征组合相比,该方法能够通过更少的特征达到相似或更高的单木检测精度.
A Feature Extraction and Combination Method for Tree Detection of Terrestrial Laser Point Clouds in Forest
To address the problems that the methods based on point cloud features for tree detection lack the importance assessment and selection of features,a method of feature extraction and combination of voxel features involved in tree detection is proposed.Firstly,a set of voxel features are proposed based on the structural differences and spatial distribution characteristics of different categories in the forest,and the trunk points are extracted by combining the commonly used basic features such as 3D,2D,grid and intensity.According to the feature importance,the feature combination is constructed and the tree detection is carried out,and then a feature selection method based on the tree detection results is proposed to determine the feature combination suitable for the current sample plot.Experiments were conducted on three different forest sample plots,and the results showed that the trunk point extraction accuracy increased by 7.3%,11.6%,and 9.5%,and single wood detection accuracy increased by 0.4%,2.6%,and 0.7%,respectively,after adding voxel features;compared with the feature selection method based on single point classification results and the feature combinations in other studies,the method in this paper was able to achieve similar or higher tree detection accuracy with fewer features.

terrestrial laser scanningpoint cloudvoxel characterizationtrunk extractiontree detection

金泽会、陈茂霖、刘祥江

展开 >

重庆交通大学智慧城市学院,重庆 400074

地面激光雷达 点云 体素特征 树干提取 单木检测

国家自然科学基金重庆市教委科学技术研究计划重庆交通大学研究生科研创新项目

41801394KJQN2020007462023S0128

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(2)