首页|深度学习支持下的城市破损路沿石检测方法

深度学习支持下的城市破损路沿石检测方法

扫码查看
针对破损路沿石在街景影像中受到 目标多尺度、相似地物干扰以及遮挡等问题,提出了 一种面向城市街道两侧破损路沿石检测的 CDD-YOLO(convolutional swin transformer deformable decouple-YOLO,CDD-YOLO)模型.依据破损路沿石呈现形状尺度多样性特点,嵌入C3_STR(convolutional swin transformer,C3_STR)模块进行特征融合,增强模型对多尺度特征的感知性能;对于相似地物干扰导致的误检现象,加入可变形卷积模块,利用 目标区域 自适应特性,提升模型对相似地物的判别能力;为避免因遮挡引起的定位不准确问题,引入解耦检测头结构,增强模型对模糊边界特征的提取能力.在 自制的街景破损路沿石数据集上进行验证,分析表明,该方法的precision、recall、F1、IoU 4项评价指标分别达到了 82.45%、81.22%、81.01%和80.23%,显著优于其他主流目标检测方法,验证了该方法的有效性和可行性.
Urban Broken Curb Stone Detection Supported by Deep Learning
Aiming at the problems of multi-scale,similar feature interference and occlusion of broken curb stones in street view images,a CDD-YOLO(convolutional swin transformer deformable decouple-YOLO)model for the detection of broken curb stones on both sides of the urban street is proposed.According to the characteristics of shape and scale diversity of broken curb stones,the features are fused by embedding C3_STR(convolutional swin transformer)module to enhance the perception performance of the model on multi-scale features.For the false detection phenomenon caused by the interference of similar ground objects,by adding the deformable convolution module,the adaptive characteristics of the target region are utilized to improve the discrimination ability of the model to similar ground objects.In order to avoid the problem of inaccurate positioning caused by occlusion,the decoupled detection head structure is introduced to enhance the extraction ability of the model for fuzzy boundary features.It is verified on the self-made data set of broken curb stones in street view,and through the analysis of results,four evaluation indicators,which are precision,recall,F1 and IoU of the method reaches 82.45%,81.22%,81.01%and 80.23%,respectively.The proposed method is significantly superior to other mainstream target detection methods,which verifies its effectiveness and feasibility.

broken curb stone detectionstreet view imagerymulti-scale targetfeature fusiondecoupled detection head

戴激光、李岩

展开 >

辽宁工程技术大学测绘与地理科学学院,辽宁阜新 123000

破损路沿石检测 街景影像 目标多尺度 特征融合 解耦检测头

国家自然科学基金国家自然科学基金

4207142842071343

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(3)
  • 8