首页|结合大卷积与优化器的遥感影像建筑物提取网络

结合大卷积与优化器的遥感影像建筑物提取网络

扫码查看
针对建筑物大小形状各异和背景相似度高导致的遥感影像建筑物提取网络的整体识别能力较差、多尺度信息提取能力低、边界模糊的问题,提出一种结合大卷积核和优化器的2U-Net网络,以更有效地提升建筑物提取精度.首先,在特征提取部分采用大核深度卷积模块构造U型网编码器,使用更大的卷积核提升感受野,解决整体识别和多尺度信息提取问题;其次,针对建筑物整体语义信息关注度低的问题,在解码器的输出端增加无参数注意力机制,通过权重函数提高建筑物关注度,抑制无用背景信息表达;最后,避免直接输出粗略特征图、建筑物边界提取模糊,构造U型优化器提高建筑物边界提取精度,优化边缘细节信息.在Satellite dataset Ⅱ(East Asia)和 WHU 数据集上,评价指标 IoUBuilding 达到 72.04%、90.71%,MIoU 达到 85.19%、94.75%,与 U-Net对比分别提高了 2.54%、2.64%和1.34%、1.51%,且均优于现有主流方法.实验结果表明,2U-Net网络提取效果更准确,对实际应用具有一定参考价值.
Building Extraction Network for Remote Sensing Images Combining Large Convolutional Kernel and Optimizer
Buildings are of different sizes and shapes with high background similarity,which leads to poor overall recognition ability of the building extraction network for remote sensing images,low multi-scale information extraction ability,and fuzzy boundaries.A 2 U-Net network combining a large convolutional kernel and an optimizer is proposed to improve the building extraction accuracy more effectively.Firstly,a large kernel deep convolutional module is used to construct a U-Net encoder in the feature extraction part,and a larger convolutional kernel is used to improve the sensory field,which solves the problem of overall recognition and multi-scale information extraction.Secondly,to address the low attention to the overall semantic information of the building,a parameter-free attention mechanism is added to the output of the decoder to increase the attention to the building through the weighting function,and to inhibit the expression of unwanted background information.Finally,to avoid direct output of rough feature maps with fuzzy building boundary extraction,a U-shaped optimizer is constructed to improve the building boundary extraction accuracy and optimize the edge detail information.On Satellite dataset Ⅱ(East Asia)and WHU dataset,the evaluation index IoUBuilding reaches 72.04%,90.71%and MIoU reaches 85.19%,94.75%,which improves 2.54%,2.64%and 1.34%,1.51%,respectively,comparing with U-Net.The proposed method also outperforms the existing mainstream methods.The experimental results show that the extraction effect of 2U-Net network is more accurate,which has certain reference value for practical applications.

semantic segmentationbuilding extractionU-Netattention mechanismmultiscaledeep learning

齐向明、侯佳兴、郝明

展开 >

辽宁工程技术大学软件学院,辽宁葫芦岛 125105

语义分割 建筑物提取 U-Net 注意力机制 多尺度 深度学习

国家自然科学基金面上项目

62173171

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(3)
  • 5