首页|语义增强与高阶强交互的SAR图像舰船检测

语义增强与高阶强交互的SAR图像舰船检测

扫码查看
合成孔径雷达(synthetic aperture radar,SAR)图像背景信息复杂、舰船目标边缘模糊,且多为容易丢失的小尺度舰船目标.针对上述问题,提出语义增强与高阶强交互的SAR图像舰船检测.该方法利用部分卷积与非对称卷积构建部分非对称卷积聚合网络,在减少计算复杂度、轻量化主干网络的同时,更好地捕捉多尺度舰船特征,同时在上采样部分引入双层路由注意力,增强对图像上下文信息的利用.另外,通过递归的方式进行特征提取,可以较好解决区域内信息交互的问题,实现不同级别特征之间的高阶交互建模,提升模型检测能力.在公开的HRSID遥感数据集上进行实验的结果表明,该方法的检测精度达到91.23%,相比原模型提升5.13%,准确率与召回率分别提升2.41%和7.16%,与主流算法相比具有较好的检测效果.
Semantic Enhancement and High-order Strong Interaction for Ship Detection in SAR Images
The background information in synthetic aperture radar(SAR)images is complex,and the edges of ship targets are often blurred,making it difficult to detect small-scale ship targets that are prone to be missed.To address these issues,this paper proposes a SAR ship detection method that combines semantic enhancement and high-order strong interactions.By using partial convolution and asymmetric convolution,a partially asymmetric convolutional aggregation network is constructed.This network reduces computational complexity and lightweight the backbone network,while better capturing multi-scale ship features.In addition,a dual-path routing attention mechanism is introduced in the upsampling part to enhance the utilization of contextual information in the image.Feature extraction in a recursive manner can better solve the problem of information interaction in the region,realize high-order interactive modeling between different levels of features,and improve model detection capabilities.Experimental results on the publicly available HRSID remote sensing dataset demonstrate that the improved method achieves a detection accuracy of 91.23%,which is a 5.13%improvement over the original model.The precision and recall rates are improved by 2.41%and 7.16%,respectively.Compared to mainstream algorithms,the proposed method achieves better detection performance.

synthetic aperture radartarget detectionsemantic enhancementhigh-order strong interactionfeature extraction

郭伟、杨涵西、李煜、王春艳

展开 >

辽宁工程技术大学软件学院,辽宁葫芦岛 125100

合成孔径雷达 目标检测 语义增强 高阶强交互 特征提取

国家自然科学基金青年基金项目

41801368

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(3)
  • 3