首页|基于耦合空间模糊C均值聚类和推土机距离的变化检测

基于耦合空间模糊C均值聚类和推土机距离的变化检测

扫码查看
在遥感影像变化检测领域中,当遥感影像受椒盐、高斯和混合噪声污染时,变化检测精度往往无法得到保证.虽然基于空间模糊C均值聚类的有监督变化检测算法能有效实现抗噪声变化检测,但是其人工训练成本和时间成本过高,在实时场景中无法大规模应用.对此,文章将5种空间模糊C均值算法分别与推土机距离(earth mover's distance,EMD)耦合,实现了 5种具有较好抗噪声能力的无监督遥感变化检测算法,能够保证噪声污染下的实时变化检测精度.实验证明,与最近提出的KPCAMNet和GMCD无监督变化检测算法相比,所提出算法能更好地处理受椒盐、高斯和混合噪声污染的遥感影像,具有一定的应用价值.
Change Detection Using Coupling Spatial Fuzzy C-means Clustering and Earth Mover's Distance
In the field of remote sensing image change detection,change detection accuracy often cannot be guaranteed when remote sensing images are contaminated by salt and pepper,Gaussian,and mixed noises.Although supervised change detection algorithms based on spatial fuzzy C-means clustering can effectively achieve noise-resistant change detection,their manual training cost and time cost are too high to be applied on a large scale in real-time scenarios.In this regard,this paper couples five spatial fuzzy C-mean algorithms with earth mover's distance(EMD),respectively,to implement five unsupervised remote sensing change detection algorithms with better noise-resistant capability,which can guarantee the real-time change detection accuracy under noise contamination.The experiments prove that compared with the recently proposed KPCAMNet and GMCD unsupervised change detection algorithms,the algorithms proposed in this paper can better process remote sensing images contaminated by salt and pepper,Gaussian,and mixed noises and have certain application values.

unsupervisedanti-noisechange detectionspatial fuzzy C-means clusteringearth mover's distance

谢江陵、李轶鲲、李小军、杨树文、魏易从

展开 >

兰州交通大学测绘与地理信息学院,兰州 730070

地理国情监测技术应用国家地方联合工程研究中心,兰州 730070

甘肃省测绘科学与技术重点实验室,兰州 730070

甘肃省测绘产品质量监督检验站,兰州 730070

展开 >

无监督 抗噪声 变化检测 空间模糊C均值聚类 推土机距离

国家重点研发计划(地球观测与导航)国家自然科学基金甘肃省自然资源厅科技项目

2022YFB390360442161069202218

2024

遥感信息
科学技术部国家遥感中心,中国测绘科学研究院

遥感信息

CSTPCD北大核心
影响因子:0.712
ISSN:1000-3177
年,卷(期):2024.39(3)
  • 8